
BAYESIAN NONPARAMETRIC ANALYSIS OF SPATIAL VARIATION

WITH DISCONTINUITIES

Cecilia Balocchi

A DISSERTATION

in

Statistics

For the Graduate Group in Managerial Science and Applied Economics

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2020

Co-Supervisor of Dissertation

Edward I. George, Professor of Statistics

Co-Supervisor of Dissertation

Shane T. Jensen, Professor of Statistics

Graduate Group Chairperson

Nancy R. Zhang, Professor of Statistics

Dissertation Committee

Bhaswar B. Bhattacharya, Assistant Professor of Statistics

James E. Johndrow, Assistant Professor of Statistics



BAYESIAN NONPARAMETRIC ANALYSIS OF SPATIAL VARIATION

WITH DISCONTINUITIES

c© COPYRIGHT

2020

Cecilia Balocchi

This work is licensed under the

Creative Commons Attribution

NonCommercial-ShareAlike 3.0

License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/

http://creativecommons.org/licenses/by-nc-sa/3.0/


Dedicated to my grandmothers, nonna Dirce and nonna Giulietta

iii



ACKNOWLEDGEMENT

This thesis could not have been made without the constant support and encouragement

of my advisors, Ed and Shane. Your intuition and wisdom have guided me in these five

years. Your patience and your dedication has been invaluable. And you have been the

best “cheerleaders” I could have ever hoped for, giving me positivity and confidence when

I needed it most. Thank you.

I also would like to thank my committee members, Bhaswar and James, for the insightful

conversation and the open doors. It has been a pleasure and honor working with you.

My thanks go to the entire Wharton Statistics Department, for fostering a friendly and

welcoming environment. And a special ‘thank you!’ the wonderful members of the staff:

your help has been priceless but most importantly you have been like a family away from

home.

I am grateful to the wonderful friends and colleagues I have met during my time at Penn.

Gemma and Sameer, Mo and Matteo, Daniela, Kathy and Federica, I feel so lucky to have

shared this journey with you.

A big thanks to my parents, who have supported me in this adventure, even if it led me

on the other side of the ocean. And finally thanks to Alberto, who has been present from

day one, has always supported and encouraged me and has made these years so much more

enjoyable.

iv



ABSTRACT

BAYESIAN NONPARAMETRIC ANALYSIS OF SPATIAL VARIATION

WITH DISCONTINUITIES

Cecilia Balocchi

Edward I. George, Shane T. Jensen

Spatial data often display high levels of smoothness but can simultaneously present abrupt

discontinuities, especially in urban environments. In this dissertation we adopt a Bayesian

perspective to account for these two contrasting facts, using partitions of areal data, and we

then focus on three challenges that arise in this setting. First, we consider the applied prob-

lem of modeling crime trends over time in Philadelphia, measured at a local neighborhood

level. We find that spatially local shrinkage imposed by a conditional autoregressive (CAR)

model has substantial benefits in terms of out-of-sample predictive accuracy of crime. We

also detect spatial discontinuities between neighborhoods that represent barriers. Then,

we extend our search for barriers by clustering areal data. We propose a model that in-

duces smoothness within clusters but allows for discontinuities between them, by assuming

a “CAR-within-clusters” structure. The first challenge introduced by spatial clustering is

that the combinatorially vast space of partitions makes typical stochastic search techniques

computationally prohibitive. We introduce an ensemble optimization procedure that sum-

marizes the posterior by simultaneously targeting several high probability partitions. We

show on simulated data that our method achieves good estimation and partition selection

performance. On the Philadelphia data we find that many recovered borders coincide with

natural or built man-made barriers. The second challenge consists in choosing a distribu-

tion over partitions: standard distributions for exchangeable partitions are not appropriate

for spatial data. We review and compare the properties of distributions for partitions of

areal data that have been proposed in the literature and introduce new ones that display

favorable properties. The third challenge relates to the problem of working with multiple
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granularities: fixing one resolution can be restrictive because different granularities can be

appropriate for different parts of a city. We introduce a model that combines the Nested

Dirichlet Process with the Hierarchical Dirichlet Process to allow for flexible partitions of

multi-resolution data and sharing of information between the partitions at different resolu-

tions. We demonstrate our method on synthetic data and on real data in West Philadelphia,

where central and suburban areas seem to be better represented by higher and lower reso-

lutions, respectively.
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Chapter 1

Introduction

The spatial distribution of crime in urban environments suggests the validity of Tobler’s

first law of geography: “everything is related to everything else, but near things are more

related than distant things”. However, at the same time, it is evidence of a less popular

but not less important statement by the geographer: “There is also obvious evidence that

one must be carefully critical in applying the first law of geography. Anisotropic effects do

occur, and so do discontinuities” (Tobler, 2004).

In this thesis, we focus on these two seemingly contradictory facts. We study how to

combine the smoothness that characterizes spatial data with the discontinuities that are

often present in urban environments.

Motivated by the modeling of crime in the City of Philadelphia, we first study the spatial

distribution of crime trends over time. Accurate modeling of urban crime dynamics can offer

various benefits: law enforcement officials can use this information to decide how to deploy

resources to ensure public safety, urban planners can gain knowledge on crime is affected

by socio-economic factors and the built environment, and city officials can improve the

quality of life in the city with community programs and interventions. We consider yearly

counts of violent crime data in the years of 2006-2015, aggregated at a local neighborhood

resolution. We model the spatio-temporal crime dynamics using a linear model that allows

neighborhood-specific behaviors. We study the spatial distribution of the neighborhood-

specific mean level of crime and trends over time.

Data that is measured within fixed spatial regions is called areal data, with the regions often

referred to as areal units. This is different from point-referenced data, which instead are

defined by coordinates that can vary continuously over the space, such as GPS-coordinates.

While the spatial aspect of point-referenced data can be described simply by their location in
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space, the geographic structure of areal data is characterized by the adjacency relationship

between the areal units. Two regions can share a border and thus be neighbors, or not.

Using models for areal data, we explore how sharing information between neighboring re-

gions improves estimation. We then extend these spatially smoothing models to allow for

discontinuities: we aim at detecting barriers, i.e. borders between neighborhoods that iden-

tify discontinuities. We consider two different approaches: we first recover barriers as local

segments separating two neighborhoods; we then identify them as closed lines that separate

whole regions from the surrounding areas, by partitioning the neighborhoods into clusters

of contiguous units displaying similar behaviors.

In our attempt to model spatial variation and recover partitions, we take a Bayesian per-

spective, which provides us with various benefits. When modeling spatial smoothness, it

allows us to easily incorporate “sharing of information” between areal units with hierarchi-

cal models. In the search for partitions of areal units, we can introduce prior information

and account for their uncertainty encoded in the posterior distribution, by considering the

parameters as random variables.

In this thesis, we consider the applied problems of modeling and clustering crime trends in

Philadelphia and we tackle several challenges that clustering areal data poses.

In chapter 2, we consider crime trends measured within local neighborhoods, and compare

models with no shrinkage, global shrinkage and spatial local shrinkage, the latter defined

using conditionally auto-regressive (CAR) models Besag (1974). We show that local shrink-

age models achieve lowest out-of-sample prediction errors. We also explore the first local

approach to recovering barriers, following the tradition of wombling (Womble, 1951). We

propose a model that identifies them as borders between pairs of neighborhoods between

which we should not be sharing informations, while accounting for uncertainty. This chap-

ter has been adapted from the research article “Spatial modeling of trends in crime over

time in Philadelphia” (Balocchi and Jensen, 2019).
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In chapter 3, we consider the second approach of finding barriers; this approach identi-

fies them as the closed-lines borders between clusters of neighborhoods. We propose a

model that partitions the city and induces smoothness within clusters but allows for dis-

continuities between them, by assuming a “CAR-within-clusters” structure. In terms of

model implementation, conventional stochastic search techniques are computationally pro-

hibitive, as they must traverse a combinatorially vast space of partitions. Rather than

directly sampling from the posterior distribution of the discrete partitions, we summarize

the posterior identifying several partitions with largest posterior probability. We achieve

this by extending the ensemble optimization procedure introduced in Ročková (2018). At

a very high level, this procedure runs several greedy searches over the discrete posterior

distribution that are made “mutually aware” through an entropy penalty that promotes

diversity among the search trajectories. On simulated and real data, our proposed method

demonstrates good estimation and partition selection performance. We use the identified

partitions to estimate crime trends in Philadelphia. This chapter has been adapted from

the work “Bayesian Spatial Clustering of Crime in Philadelphia with Particle Optimization”

with Sameer Deshpande, Ed George and Shane Jensen (Balocchi et al., 2019).

In chapter 4, we consider the problem of specifying a prior distribution for partitions of areal

data. A common choice in the Bayesian nonparametric literature is the distribution induced

by the Dirichlet Process, because of its mathematical convenience; however, the property

that makes it so attractive, the fact of inducing exchangeable partitions, is also the one that

makes inappropriate for describing spatial data: spatial data is not exchangeable and the

probability that two adjacent units belong to the same cluster should not be the same as

that for two units that are distant. In this chapter we review and compare the properties

of distributions for partitions of areal data that have been proposed in the literature, and

introduce new ones that follow the framework of Müller et al. (2011).

Finally, in chapter 5, we consider the problem of multi-resolution clustering. Cities like

Philadelphia, and more generally regions divided into areal units, can be split at different
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granularities. The majority of the analyses of areal data fix one layer of resolution and

only study the chosen granularity. However, in complex environments, such as cities, the

spatial variation of the data can arise at different resolutions in different regions. For ex-

ample, central areas are more densely populated and heterogeneous, compared to suburban

areas. In central areas we might expect a phenomenon like crime to be changing at a finer

granularity than in suburban areas. Therefore, instead of reducing the analysis to a specific

level, it can be beneficial to simultaneously consider multiple resolutions. We introduce a

new model, the nested Hierarchical Dirichlet Process, that allows clustering of areal units

at multiple resolutions, while sharing information between the different levels partitions.

The rest of this introductory chapter reviews basic concepts of spatial data analysis and

nonparametric Bayesian statistics.

1.1. Spatial Data Analysis Introduction

Spatial data can be classified into three types:

• point-referenced data, for which the location varies continuously over the space;

• areal data, for which the location varies over a discrete and finite set of well-defined

regions that partition the space;

• point-process data, for which the location is itself random, i.e. the support of a spatial

point-process.

A common method for modeling spatial point-referenced and point-processes data is kriging

or Gaussian process interpolation (Stein, 2012; Cressie, 1990). This can be studied either

with a classical approach, or with a Bayesian approach (Banerjee et al., 2014). Additional

popular models for point-processes data consider other frameworks such as Gibbs point

processes, Poisson processes and Cox processes; see Møller and Waagepetersen (2007).

Common classical methods for modeling areal data are spatial autoregressive models, that
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include the Simultaneous Autoregressive Model (Whittle, 1954), the spatial Durbin model

(Anselin, 2013) and the Conditionally Auto Regressive model (Besag, 1974); for a review

of these and other methods see LeSage and Pace (2009). Many of these models have also

been considered and used in a Bayesian framework (Banerjee et al., 2014).

1.1.1. Areal data

Spatial areal data is measured over a discrete and finite set of regions that partition the

space. These regions, known as areal units, have well-defined and fixed borders, which

determine the adjacency relationship between the units.

The geographical structure of the areal units is encoded in the matrix W= (wij) of weights

that capture the spatial proximity of the areal regions. Often, the proximity is defined as

the adjacency relationship and the matrix W corresponds to the adjacency matrix:

wij =


1 if i and j share a border,

0 if i and j do not share a border.

“Sharing a border” can mean different things, depending on the contiguity method used:

according to the rook contiguity method, two regions are adjacent if their borders share at

least a segment; according to the queen method instead, two regions share a border if they

share at least a point.

To measure the strength of this spatial correlation of areal data, one of the standard statistics

is Moran’s I (Moran, 1950; Banerjee et al., 2014), which is defined as

I =
n∑

i

∑
j wij

∑
i

∑
j wij(Xi − X̄)(Xj − X̄)∑

i(Xi − X̄)2

Moran’s I can be used for testing for spatial autocorrelation: under the null hypothesis

of no spatial association, it is possible to compute exactly the mean (equal to − 1
n−1) and

standard error of Moran’s I and construct a Z-test.
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1.1.2. Conditionally Auto Regressive models

To model areal data or random variables we will mostly use the conditionally autoregressive

(CAR) model, which was introduced in its most general formulation by Besag (1974). The

CAR model is a Gaussian Markov random field which induces spatial dependence through

an adjacency matrix for the areal units.

Several variations of this CAR framework are reviewed and compared in Lee (2011). In this

work, we will use the proper CAR formulation introduced by Leroux et al. (2000).

Let θ denote a vector of elements that are potentially spatially correlated, where each

component θi corresponds to the parameter for areal unit i. Leroux et al. (2000) defines the

distribution of each θi given the other θ−i as a normal distribution centered at a weighted

average of a global mean and the θj ’s from bordering neighborhoods,

θi | θ−i, θ0, τ
2 ∼ N

(
ρ
∑

j wij θj + (1− ρ) θ0

ρ
∑

j wij + (1− ρ)
,

τ2

ρ
∑

j wij + (1− ρ)

)
,

where wij are adjacency weights that are equal to 1 if the neighborhoods i and j share a

border and equal to 0 otherwise.

The parameter ρ ∈ [0, 1] represents the strength of the spatial correlation between the

components of θ, where larger values of ρ correspond to a stronger influence of bordering

neighborhoods. In the special case of ρ = 0, the CAR distribution reduces to the multivari-

ate normal distribution with independent covariance structure.

It can be proved (Banerjee et al., 2014, Ch.3) using Brook’s lemma (Brook, 1964), that the

joint distribution of θ is uniquely determined by the set of conditional distributions:

θ|θ0, τ
2 ∼ N

(
θ0 · 1 , τ2 · [ρ(DW −W) + (1− ρ)I]−1

)
where 1 is a vector of 1’s and DW −W is the Laplacian matrix based on our neighborhood
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adjacency matrix W. For values of ρ in [0, 1) the joint distribution is proper, while for

ρ = 1 the distribution is degenerate (Lee, 2011). By adding the constraint
∑

i(θi − θ0) = 0

we can get a distribution for a n-dimensional vector, concentrated in a (n− 1)-dimensional

subspace; this is known as the intrinsic CAR by Besag et al. (1991).

1.2. Bayesian Nonparametrics Introduction

Clustering is often performed with a model-based approach that relies on mixture modeling.

In parametric Bayesian mixture models, each data point is generated from one of a finite

set of mixtures; the mapping of data into mixtures identifies a partition of the units into

clusters. However, these models require specification of the number of mixtures a priori,

which is often unknown. Bayesian nonparametric mixture models instead do not assume

a fixed, finite number of mixtures, but rather an unbounded number of mixtures, which

allows for the number of clusters in the data to be adaptively estimated.

Many nonparametric Bayesian mixture models are based on the Dirichlet Process (Ferguson,

1973), which is a distribution over random probability measures. Let G0 be a distribution

on (Θ,B) and α > 0. We say that G, a random probability measure on (Θ,B), is distributed

according to the Dirichlet Process DP(α,G0), if for any finite partitions (A1, . . . , Ak) of Θ,

(G(A1), . . . , G(Ak)) ∼ Dir (αG0(A1), . . . , αG0(Ak)) .

In this case we write G ∼ DP(α,G0). The parameters that characterize the DP, α and G0,

are respectively called the concentration parameter and the base distribution. Ferguson

(1973) showed that a draw G for the Dirichlet Process is almost surely discrete and can be

written as

G =

∞∑
k=1

pkδθ∗k ,

where δθ∗k are the atoms of G and pk is the probability associated with θ∗k. According to

the stick-breaking construction of G (Sethuraman, 1994), the atom locations θ∗k are i.i.d.
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random variables distributed according to G0 and the probabilities pk = bk
∏k−1
j=1(1 − bj),

where bj
iid∼ Beta(1, α); we will denote the stick-breaking construction with (pk) ∼ SB(α).

Because of its discreteness, the Dirichlet Process is rarely employed to directly model data;

instead, it is mostly used for specifying a prior distribution for the mixture components

in mixture modeling. Let {y1, . . . , yn} be a set of exchangeable observations drawn from a

mixture model, and let {θ1, . . . , θn} be the latent mixture components associated with each

observation: yi given θi is drawn from f(·; θi). To specify a prior distribution on the latent

mixture components we assume θ1, . . . , θn|G
iid∼ G and G ∼ DP (α,G0).

yi|θi ∼ f(·; θi)

θi|G ∼ G

G|α,G0 ∼ DP(α,G0).

For the rest of this description we will mostly focus on the modeling of the latent mix-

ture components, and we will assume that the observations are drawn from a parametric

distribution f parametrized by the mixture component.

The discreteness of G also implies that among the latent mixture components θ1, . . . , θn

some values will be repeated with high probability. Therefore, a partition γ is induced

on the data by the mixture components, with clusters identified by their unique values

θ∗i1 , . . . , θ
∗
iK

: for k = 1, . . . ,K, we define Sk = {i : θi = θ∗ik} and γ = {S1, . . . , SK}.

Before analyzing the behavior of the mixture components, let us describe the posterior

distribution of G given θ1, . . . , θn. Let (A1, . . . , Ak) be a partition of Θ and let nk =

| {θi ∈ Ak} |. It is easy to see that

(G(A1), . . . , G(Ak))|θ1, . . . , θn ∼ Dir(αG0(A1) + n1, . . . , αG0(Ak) + nk).
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Then the posterior distribution of G is a Dirichlet Process, with updated parameters:

G|θ1, . . . , θn ∼ DP

(
α+ n,

H +
∑n

i=1 δθi
α+ n

)
.

If now we consider the conditional predictive distribution of θi|θ1, . . . , θi−1, marginally of

G, we can recover the Blackwell-MacQueen Urn (Blackwell et al., 1973):

Pr(θi ∈ A|θ1, . . . , θi−1) = E [G(A)|θ1, . . . , θi−1] =

=
1

α+ n

αG0(A) +

i−1∑
j=1

δθi(A)



It is easy to see that the sequence θ1, . . . , θn is exchangeable. As a consequence, also

the partition γ is exchangeable, i.e. its probability is invariant to permutation of the units

indexes. Moreover, its probability p(γ = {S1, . . . , SK}) can be described by the exchangeable

partition probability function (EPPF) p(n1, . . . , nK), where ni is the size of cluster Si:

p(γ = {S1, . . . , SK}) = p(n1, . . . , nK) =
αk
∏k
j=1(nj − 1)!

α(α+ 1) . . . (α+ n− 1)

which is also known as Ewens’ formula (Ewens, 1972; Pitman, 1995).

The same distribution over random partitions can be achieved with the Chinese Restaurant

Process (CRP) (Aldous, 1985) iterative construction. In the CRP metaphor, each unit is

represented by a costumer entering a restaurant with an infinite number of tables, who

picks at which table to seat. Each table corresponds to a cluster and each costumer chooses

proportionally to the number of people already sitting at the table, or chooses a new table

with probability proportional to α. Let zi represent the cluster membership of unit i (or

its table choice), let K be the number of clusters occupied by the first i − 1 units and nk
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be the size of cluster k: nk = | {i : zi = k} |. Then,

p(z1 = 1) = 1

p(zi|z1, . . . , zi−1) =
K∑
k=1

nk
i− 1 + α

δk +
α

i− 1 + α
δK+1

This distribution is characterized by a rich-get-richer behavior, as a large cluster attracts

even more units. As a consequence, as the number of units n increases, the number of

clusters grows at a logarithmic rate, as α log(n).

The mathematical tractability of Ewens’ formula, of the Blackwell-MacQueen Urn and of

the Chinese Restaurant Process, have made the Dirichlet Process widely used. However,

the rich-get-richer behavior that the Dirichlet Process induces might not be suitable for

some situations. The Pitman-Yor process (PYP) (Pitman, 1995; Pitman and Yor, 1997)

is another distribution on random probability distributions. The distribution it induces

over partitions allows for a larger number of clusters, and an asymptotic power-law growth.

This distribution, also known as the Ewens-Pitman distribution, is described by the Ewens-

Pitman formula:

Pr(γ = {S1, . . . , Sk}) =

∏k−1
j=1(α+ jσ)

(α+ 1)n−1

k∏
j=1

(1− σ)nj−1

where σ ∈ [0, 1) and α > −σ. This distribution includes the special case of the Ewens’

formula, when σ = 0.

The Ewens-Pitman distribution can also be recovered from the sequence of conditional

distributions that extend the Chinese Restaurant Process. If zi represent the cluster mem-

bership of unit i, K is the number of clusters occupied by the first i − 1 units and nk the
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size of cluster k, then

p(z1 = 1) = 1

p(zi|z1, . . . , zi−1) =
K∑
k=1

nk − σ
i− 1 + α

δk +
α+Kσ

i− 1 + α
δK+1

The new parameter σ is affecting the number of clusters: the asymptotic number of clusters

grows as nσ. This power law behavior is sometimes considered more appropriate for certain

real world applications.
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Chapter 2

Spatial Modeling of Trends in Crime over Time

2.1. Introduction

Modeling and prediction of crime has always been of interest to local authorities, police

departments and governments to assure safety of the population and more efficient law

enforcement. Recent availability of detailed crime data has made this effort even more

accessible to statistical practitioners and the general public.

As an example, the Philadelphia police department has released detailed information about

reported crimes committed from 2006 to the present day1. The information about each

reported crime includes the type of crime (which we will describe in Section 2.2), the date

and time of the crime and the GPS location of the crime.

Using their reported crime data, many police departments have used statistical modeling

procedures and algorithms to help predict locations of crimes for better prevention and faster

intervention (Hvistendahl, 2016). The modeling of crime locations is not only useful for law

enforcement but also for marketing strategies related both to real estate and commercial

activities, e.g. Trulia2 uses crime data as part of their evaluation of the relative safety and

attractiveness of different neighborhoods. In this work, we will focus on estimating changes

in violent crimes over the past decade at a local neighborhood resolution which will involve

both temporal and spatial modeling of crime.

Many different approaches have been taken to the modeling of the spatial distribution of

crime. These approaches can be subdivided into two general categories, either modeling

Adapted from a research article:
Balocchi, C., Jensen, S. T. (2019) “Spatial modeling of trends in crime over time in Philadelphia” Annals
of Applied Statistics 13(4):22352259

1http://www.phlcrimemapper.com/
2https://www.trulia.com/
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crime as a spatial point process using the specific locations of each reported crime (Mohler

et al., 2011; Taddy, 2010; Flaxman, 2014) or modeling crime as areal data, i.e. totals

aggregated within larger regions, as in Aldor-Noiman et al. (2016), Law et al. (2014) and

Li et al. (2014).

A common method for modeling spatial point processes is kriging or Gaussian process inter-

polation (Stein, 2012; Cressie, 1990). This can be studied either with a classical approach,

or with a Bayesian approach (Banerjee et al., 2014). Alternative popular models consider

other frameworks such as Gibbs point processes, Poisson processes and Cox processes; see

Møller and Waagepetersen (2007).

Common classical methods for modeling areal data are spatial autoregressive models, that

include the Simultaneous Autoregressive Model (Whittle, 1954), the spatial Durbin model

(Anselin, 2013) and the Conditionally Auto Regressive model (Besag, 1974); for a review

of these and other methods see LeSage and Pace (2009). Many of these models have also

been considered and used in a Bayesian framework (Banerjee et al., 2014).

Our goal in this work is the estimation of trends in violent crime over the past decade

at a high resolution local neighborhood level throughout the city of Philadelphia. As it is

well established that crime frequencies are spatially correlated (Herbert, 1982; Brantingham

and Brantingham, 1984), we need to create a model that allows the change in crime over

time to be correlated by locally proximal neighborhoods. Our model will also account for

characteristics of each local neighborhood, including the population count of the area and

economic health of residents, as measured by median income and poverty level of households.

In addition to aiding law enforcement, accurate estimation of changes in crime at the local

neighborhood level would also enable the study of the association between crime trends and

changes in the built environment. We are particularly interested in how aspects of the built

environment encourage vibrancy, a measure of positive human activity, and how vibrancy

is associated with safety in local neighborhoods (Humphrey et al., 2017).
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The city of Philadelphia is a particularly interesting case study for estimating trends in

crime as it is a large urban area that is currently undergoing substantial development and

experiencing population growth for the first time in decades. In addition to our primary goal

of estimation of changes in crime in Philadelphia neighborhoods, this application also pro-

vides an interesting spatio-temporal data context for comparing different Bayesian shrinkage

approaches to spatial areal modeling.

We will take an areal approach to modeling crime since our primary goal is greater un-

derstanding of evolving crime dynamics at the local neighborhood level within the city of

Philadelphia. Our areal units will be U.S. Census block groups which consist of 10-20 city

blocks and which are naturally interpretable as neighborhoods. U.S. Census block groups

are also the highest resolution for which economic data is available as covariate information.

Compared to previous areal approaches (e.g. Aldor-Noiman et al. (2016), Law et al. (2014)

and Li et al. (2014)), we are using smaller areal units and we will focus on not only total

crime but also the trend in crime over time within each local neighborhood. We have a

longer time period (ten years) of recorded crimes for estimating time trends than Law et al.

(2014) that worked with property crimes over a two year period.

Our methodological contribution is the development of a Bayesian spatial modeling frame-

work to explore global vs. local smoothing for our parameter estimates while also allowing

for data-driven discontinuities in our model between proximal areal units. Using a Bayesian

approach allows us to induce this smoothing through shrinkage priors for our parameters

and also enables us to estimate borders between neighborhoods that have a high probability

of being barriers.

In Section 2.2, we provide details for the neighborhood structure of Philadelphia and de-

scribe the detailed crime data that we will use to estimate changes in crime over the past

decade. We also outline the demographic, economic and land use measures we will use as

neighborhood-level predictors of violent crime in our spatial models. The code for acquiring
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and cleaning the data that were used in this analysis is available as a GitHub repository

at https://github.com/cecilia-balocchi/Urban-project. In Section 2.3, we develop

several Bayesian modeling approaches for global or local sharing of information between

Philadelphia neighborhoods, as well as a model extension that allows for spatial discon-

tinuities in our parameter estimates between proximal neighborhoods. We then compare

these modeling options in terms of both in-sample and out-of-sample predictive accuracy

in Section 2.4. We visualize and discuss the results of our spatial modeling of crime trends

for Philadelphia in Section 2.5 and then conclude with a brief discussion in Section 2.6.

2.2. Population, Economic and Crime Data in Philadelphia

The population and economic data are provided by the US Census Bureau whereas crime

data is provided by the Philadelphia Police Department. Our definition of local neighbor-

hoods in Philadelphia will be based upon the “block group” geographical units defined by

the US Census Bureau. The city of Philadelphia is divided into 384 census tracts which are

divided into 1336 block groups. Shapefiles from the US Census Bureau give the boundaries

and area of each census block group. Figure S1 in appendix A gives a map outlining the

1336 block groups in Philadelphia.

Our motivation for analyzing trends in crime at this resolution is two-fold: a. US census

block groups consist of 10-20 city blocks which generally matches our concept of a “neigh-

borhood” and b. the block group level is the highest resolution of the economic data that

we will use as predictors of crime. The average size of block groups in Philadelphia is 0.26

km2, with an average population of 1142 residents.

Our population data was pulled from the census website3 by setting the geography as all

blocks in Philadelphia and setting the data source as “Hispanic or Latino Origin By Race”

(which is SF1 P5 in their database). The raw demographic data gives the population count

in each block group from the 2010 census. Figure S1 in appendix A gives the population

3https://factfinder.census.gov/
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count for each block group in Philadelphia.

The same data also has the population count in each block group divided by ethnic cat-

egories4. From these ethnicity counts, we calculate a measure of the segregation in each

block group as

segregationi = 1
2

∑
r

|pi,r − pr|

where pi,r is the proportion of ethnicity r in block group i and pr is the proportion of

ethnicity r across the entire city of Philadelphia. The fraction 1
2 scales this segregation

measure to be between 0 and 1.

In addition to population count and our segregation measure, we will also consider several

measures of the economic health of each neighborhood. Our economic data comes from the

American Community Survey from the same US census website as our population data,

specifically tables B19301 for income and C17002 for poverty, both from 2013. This data is

only available at the resolution of census block groups. For each block group (neighborhood)

in Philadelphia, we have income per capita as one predictor of crime.

We also have information about the proportion of households in various states of poverty.

Specifically, we have the fraction of the population in seven different brackets of income-to-

poverty-line ratios: [0, 0.5), [0.5, 1), [1, 1.25), [1.25, 1.5), [1.5, 1.85), [1.85, 2), [2,∞). For ex-

ample, the [0.5, 1) bracket represents families that have income between 50% of the poverty

line and the poverty line itself. The poverty line is defined by the Census Bureau according

to the size and composition of a household (e.g. a family with two children has a poverty

line threshold of $23,999).

We use this poverty data to create a single measure of poverty for each block group (neigh-

borhood) by calculating a weighted sum of the proportion of households in each of the seven

4The ethnic categories are: White, Black, Asian, Native Americans, Native Pacific Islanders (including
Hawaii), Other, Two or more races (nonhispanic) and Hispanic/Latino. We combined Native Americans,
Native Pacific Islanders, and Two or more races into the Other category, which leads to five ethnicities in
our analysis: 1. White, 2. Black, 3. Hispanic, 4. Asian, and 5. Other.
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poverty brackets:

povertyi =
7∑
j=1

wj qi,j

where qi,1 is the proportion of households in block group i that are in the lowest bracket

[0, 0.5) and qi,7 is the proportion of households in block group i in the highest bracket [2,∞).

We use linearly decreasing weights w = [1, 5/6, 4/6, 3/6, 2/6, 1/6, 0] to give higher weight

to the brackets with higher poverty. Our poverty measure varies from 0 to 1, with larger

values implying higher poverty.

In addition to the demographic and economic predictors described above, we also derive

measures of the built environment that may also be predictive of crime. Our data on the

built environment comes from the zoning designation of each lot in Philadelphia. Zoning

data from the City of Philadelphia provides the area and registered land use designation

(e.g. commercial, residential, industrial, vacant, transportation, park, civic) of all 560,000

lots in Philadelphia.

We create several land use metrics from these zoning designations that could be predictive

of crime. First, we calculate the fraction of area in each block group i that is designated as

‘Vacant’,

vacancyi =
Areai(Vacant)

Areai

Second, we calculate the ratio of the area in each block group i that is commercial versus

residential,

comrespropi =
Areai(Commercial)

Areai(Commercial) +Areai(Residential)

To summarize, we have created six neighborhood characteristics that we will use as pre-

dictors of crime: population count, segregation, median household income, poverty, vacant

proportion and commercial vs. residential proportion. Some block groups in Philadelphia

have missing values for the economic predictors due to a very small or zero population

count. We exclude these block groups (a total of eight) from our analysis. We additionally

exclude one block group containing the detention centers in Philadelphia.
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Our crime data comes from the Philadelphia Police Department and includes all crimes

reported by the police in the city of Philadelphia from January 1, 2006 to December 31,

2015. For each reported crime, we have the type of crime, the date and time of the crime,

and the location of the crime in terms of the GPS latitude and longitude (WGS84 decimal

degrees). Each crime in our dataset is categorized into one of several types: homicide, sex

crime, armed robbery, assault, burglary, theft, motor vehicle theft, etc.

We make a distinction between violent and non-violent (property) crimes in our analysis.

As defined by the Uniform Crime Reporting program of the FBI, violent crimes include

homicides, rapes, robberies and aggravated assaults whereas non-violent crimes include

burglaries, thefts and motor vehicle thefts.

Our own crime categorization differs from the FBI in two ways. We combine ‘rapes’ and

‘sex assaults’ (which changed in definition in 2013) into a broader ‘sex crimes’ category

and consider all ‘sex crimes’ as violent crimes. The FBI also makes a distinction between

‘aggravated assaults’ and ‘other assaults’, with the latter being where an injury does not

occur but the threat of injury is present. In contrast, we combine both ‘aggravated assaults’

and ‘other assaults’ into a broader ‘assaults’ category and consider all ‘assaults’ as violent

crimes.

For this work, we focus entirely on the modeling of violent crimes as they have the most

direct impact on human safety and the perception of safety. However, non-violent crimes

are also important to track for law enforcement and are a focus of ongoing research. In the

subsequent analyses in this work, we will use ‘crime’ to mean only violent crimes.

In Figure 1, we give the counts of each type of violent crime within each year in 2006-2015,

aggregated over the entire city. We see generally decreasing trends within the assault and

robbery categories, which are the most numerous types of crimes. Sex crimes and homicides

are also somewhat decreasing over this time span though it is harder to see this trend given

the low counts for either type of crime.
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Figure 1: Counts of the different types of violent crimes in each year aggregated over the
entire city of Philadelphia.

Clearly, the impression given from Figure 1 is that violent crimes are generally decreasing in

the city of Philadelphia over the time period from 2006 to 2015. However, are there specific

neighborhoods that show substantially larger decreases or even some neighborhoods that

show increases in violent crimes in this period?

As discussed in Section 2.1, we will model the spatial distribution of crime with an areal

approach where our areal units are U.S. Census block groups which we define as the local

neighborhoods of Philadelphia. Violent crimes are aggregated within each U.S. Census

block group based on the GPS coordinates of each reported crime.

One issue with this approach is that some crimes occurring near to a boundary between U.S.

Census block groups could be aggregated into the incorrect areal unit due to measurement

error or ambiguity in their recorded point locations. This possibility is one of several mo-

tivations for our hierarchical Bayesian modeling approach that shares information between

adjacent block groups when estimating crime totals and trends in crime over time across

the city of Philadelphia.
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In Figure S2 of appendix A, we give the count of violent crimes per year in each block

group averaged over the years 2006-2015. One can see substantial heterogeneity across

block groups in the average counts of violent crimes per year. There are several outlying

values: particular block groups that have much higher average violent crime counts.

These outlying neighborhoods motivate us to examine violent crime totals on the log scale.

In Figure S2 of appendix A, we also give the average of the logarithm of the count of violent

crimes per year in each block group, averaged over the years 2006-2015. We can see more

details of the spatial distribution of violent crime on the log scale. Modeling crime on the log

scale has the additional benefit that changes in log crime can be interpreted as percentage

changes in crime.

We also see in Figure S2 evidence of spatial correlation in violent crime totals between

proximal block groups throughout the city. This is not surprising since the factors that lead

to crime likely vary throughout the city in a (mostly) spatially continuous fashion. It is this

spatial correlation that will be the focus of our modeling work in Section 2.3.

To get an idea of the strength of this spatial correlation, one of the standard statistics used

for areal data is Moran’s I (Moran, 1950; Banerjee et al., 2014), which is defined as

I =
n∑

i

∑
j wij

∑
i

∑
j wij(Xi − X̄)(Xj − X̄)∑

i(Xi − X̄)2

where W = (wij) is a matrix of weights that capture the spatial proximity of the areal

regions. We set wij to be 1 if block groups i and j share a border and 0 otherwise. We

use the queen contiguity method so two block groups share a border if they share at least

a point on their boundaries.

Moran’s I can be used for testing for spatial autocorrelation: under the null hypothesis of

no spatial association, we can compute exactly the mean (equal to − 1
n−1) and standard

error of Moran’s I. Calculating I on the total number of violent crimes from 2006 to 2015 in

our data gives an observed value of 0.335, compared to a null mean of 0.0007 and standard
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error of 0.0127, which suggests a highly significant amount of spatial autocorrelation in

violent crime totals.

In the next section, we develop several different Bayesian strategies for modeling violent

crime over time and spatially between the areal neighborhoods of Philadelphia. We will fit

our models on the violent crime data from 2006 to 2014, leaving data from 2015 for model

comparison and evaluation.

2.3. Modeling Areal Crime Data over Space and Time

As described in Section 2.2, the areal units of our analysis are the 1336 US census block

groups of Philadelphia (shown in Figure S1 in appendix A).

For the remainder of this work, we will use the terms “block group” and “neighborhood”

interchangeably. The input data for our analysis is the number of violent crimes, cit,

reported in year t within neighborhood i. Our temporal range is t = 1, . . . , T with T = 10,

for the years 2006-2015 and our spatial range is i = 1, . . . , n with n = 1336, for all the block

groups in Philadelphia.

As seen in the violent crime totals (averaged over time) in Figure S2 of appendix A, there

are some substantial outlying neighborhoods with high violent crime totals relative to most

of the city. These outliers (and general skewness in violent crime totals) motivates us to

model violent crime totals on the logarithmic scale. This strategy has the additional benefit

that linear changes over time in the logarithm of violent crime totals can be interpreted as

percentage changes in raw violent crime totals.

However, because there are a small number of neighborhoods with zero crimes in some

years, we need to consider a transformation that is defined at zero. Accordingly, we use

the inverse hyperbolic sine transformation (Burbidge et al., 1988b) that is centered to give

values approximately equal to the logarithmic transformation. Specifically, we calculate our
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transformed violent crime totals as

yit = log(cit +
√
c2
it + 1)− log(2) (2.1)

where cit is the total number of violent crimes reported in year t within neighborhood i. A

more common solution would be to add a small non-zero value to the counts, e.g. log(cit+1).

We prefer the inverse hyperbolic sine transformation as it is numerically equivalent to the

log transformation for large counts but is a better approximation than the log(cit + 1)

transformation for small counts.

An alternative modeling strategy for count data does not apply a transformation but as-

sumes a Poisson distribution for the counts (Law et al., 2014; Li et al., 2014; Anderson

and Ryan, 2017). The Poisson model would not work since our data is over-dispersed,

and the more flexible negative-binomial distribution does not model mean and variance as

intuitively as a normal model. In addition, the normal model is conjugate for the prior

distributions we will be considering which eases posterior estimation.

2.3.1. Accounting for Neighborhood Level Covariates

We use a standard linear regression approach to account for the neighborhood-level eco-

nomic, demographic and land use predictors of crime. Our transformed violent crime totals

yit are modeled as,

yit = α+ zTi γ + eit, (2.2)

where zi is the vector of predictor variables for neighborhood i and γ is the vector of

coefficients for those predictor variables, so zTi γ =
∑6

d=1 γdzid.

As outlined in Section 2.2, we have d = 6 predictor variables of crime for each neighbor-

hood: population count, segregation, median household income, poverty, vacant proportion

and commercial vs. residential proportion. We used square root transformations of vacant

proportion, commercial vs. residential proportion and poverty and a logarithmic transfor-

22



mation of income to give a more linear relationship with the outcome variable.

Although yearly demographic and economic data is available after 2013, we avoid extrapo-

lating values of the predictors to earlier years by modeling each predictor variable as static

over the ten year period spanned by our crime data. We examine the estimated partial

effects γ of these economic, demographic and land use predictors in Section 2.5.1.

Although there is interest in the partial effects of our crime predictors, our primary interest

lies in the temporal trends captured by eit and the spatial correlation in these trends. With

these time trends, we will be able to answer questions such as ‘what areas of the city are

increasing or decreasing most quickly in terms of safety?’.

2.3.2. Time Trends with No Spatial Correlation

We can add a global linear trend over time into our model,

yit = α+ zTi γ + β · t+ εit where εit ∼ N(0, σ2) (2.3)

where the scalar coefficient β can be interpreted as the global percentage change in violent

crime over time across the entire city of Philadelphia and t takes on integer values from 1

to 10 to represent the years 2006-2015.

However, this model with only a global α and β does not allow for heterogeneity between

different neighborhoods in the overall level of violent crime or trend in violent crime over

time. We can account for this heterogeneity through neighborhood-specific intercepts αi

and slopes βi, which give us the model

yit = αi + zTi γ + βi · t+ εit where εit ∼ N(0, σ2). (2.4)

However, model (2.4) is over-parameterized: in fact, the effect of our static covariates is

completely explained by the neighborhood-specific intercepts αi, so the same fit can be
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achieved by removing the covariates,

yit = αi + βi · t+ εit where εit ∼ N(0, σ2) (2.5)

Nonetheless, we can still estimate the partial effects of the covariates with an equivalent

two-stage approach where we first fit yit = α+zTi γ+eit and then fit the estimated residuals

with the neighborhood-specific coefficient model, êit = αi + βit+ εit.

These neighborhood-specific model coefficients allow us to identify regions of Philadelphia

with different levels of crime as well as different trends in crime over the past decade. This

richer model is also motivated by fit to the data: a regression model with neighborhood-

specific coefficients explains significantly more variation according to an F-test.

That said, we do not expect that every single neighborhood in Philadelphia would have

unique coefficients, so we still risk over-parametrization with this model. We address this

over-parameterization by imposing shared prior distributions for the neighborhood-specific

coefficients from our time trend model (2.5),

α ∼ N (α0 · 1 , τ2
α · I) (2.6)

β ∼ N (β0 · 1 , τ2
β · I) (2.7)

γ ∼ N (0 , τ2
γ · I) (2.8)

where we denote our collection of neighborhood specific coefficients with α = (α1, . . . , αn)

and β = (β1, . . . , βn). γ = (γ1, . . . , γd) collects the coefficients (partial effects) of the

predictor variables which are shared by all neighborhoods.

We complete this model formulation by placing flat priors on the global means α0 and β0,
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p(α0, β0) ∝ 1, and inverse gamma priors on the variance parameters

σ2 ∼ Inv-Gamma(aσ, bσ)

τ2
α ∼ Inv-Gamma(aα, bα)

τ2
β ∼ Inv-Gamma(aβ, bβ)

τ2
γ ∼ Inv-Gamma(aγ , bγ).

The variance hyper-parameters are tuned in an empirical Bayes fashion so that the prior

mean of the variance parameters is equal to the variance estimated from the model with no

shrinkage, and the prior variance is small. Using non-informative priors for these variance

parameters produced nearly identical results. See Section A.4 in the appendix for details.

This Bayesian hierarchical model shares information between neighborhoods by shrinking

the neighborhood specific coefficients αi and βi towards global parameters (α0, β0) for the

entire city. For this reason, we refer to this approach as the global shrinkage model.

However, this global shrinkage model does not account for the spatial proximity between

neighborhoods when sharing information. We expect close neighborhoods to behave simi-

larly while we want distant neighborhoods to be informative but not as directly influential

as adjacent ones. In other words, we may prefer a model that imposes local shrinkage rather

than global shrinkage.

A model with local sharing of information would also be better able to address the sub-

stantial spatial correlation that we see in our application. Testing with Moran’s I shows

that the residuals from the global shrinkage model are significantly spatially correlated. In

the next subsection, we will explore conditional auto-regressive models for local sharing of

information.
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2.3.3. Time Trends with a Spatial Conditional Auto Regressive Model

A popular way of incorporating spatial information is through a prior distribution that is

specified according to a Conditional Auto Regressive (CAR) model, which was introduced

in its most general formulation by Besag (1974). The CAR model is a Gaussian Markov

random field which induces spatial dependence through an adjacency matrix for the areal

units, which in our case are neighborhoods in Philadelphia.

Several variations of this CAR framework are reviewed and compared in Lee (2011). In this

work, we will use the proper CAR formulation introduced by Leroux et al. (2000).

Let θ denote a vector of elements that are potentially spatially correlated, such as our

neighborhood-specific intercepts α or slopes β. Leroux et al. (2000) defines the distribution

of each θi given the other θ−i as a normal distribution centered at a weighted average of a

global mean and the θj ’s from bordering neighborhoods,

θi | θ−i, θ0, τ
2 ∼ N

(
ρ
∑

j wij θj + (1− ρ) θ0

ρ
∑

j wij + (1− ρ)
,

τ2

ρ
∑

j wij + (1− ρ)

)
, (2.9)

where wij are adjacency weights that are equal to 1 if the neighborhoods i and j share a

border and equal to 0 otherwise.

We collect these adjacency weights wij into an adjacency matrix W that we assume (for

now) to be known since we can easily use the shapefiles from the US Census Bureau to

determine which of the 1336 neighborhoods (census block groups) share a border.

For now, we consider these adjacency weights wij to be fixed. However, in Section 2.3.4

we will extend our model to allow those weights to vary since some borders may represent

barriers between neighborhoods (e.g. highways or rivers), in which case we would not want

to share information across that particular border.

The parameter ρ ∈ [0, 1] represents the strength of the spatial correlation between the

components of θ, where larger values of ρ correspond to a stronger influence of bordering
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neighborhoods. In the special case of ρ = 0, the CAR prior (2.9) reduces to the global

shrinkage prior (2.6)-(2.7).

It can be proved (Banerjee et al., 2014, Ch.3) using Brook’s lemma (Brook, 1964), that the

joint distribution of θ is uniquely determined by the set of conditional distributions defined

in 2.9:

θ|θ0, τ
2 ∼ N

(
θ0 · 1 , τ2 · [ρ(DW −W) + (1− ρ)I]−1

)
(2.10)

where 1 is a vector of 1’s and DW −W is the Laplacian matrix based on our neighborhood

adjacency matrix W. For values of ρ in [0, 1) the joint distribution is proper, while for

ρ = 1 the distribution is degenerate (Lee, 2011). By adding the constraint
∑

i(θi − θ0) = 0

we can get a distribution for a n-dimensional vector, concentrated in a (n− 1)-dimensional

subspace; this is known as the intrinsic CAR by Besag et al. (1991).

We will employ this CAR model as prior distributions for the vectors of time trend coeffi-

cients α and β. We assume α and β are a priori independent. In vector form, the CAR

model (2.9) corresponds to the following prior distributions for α and β,

α ∼ N
(
α0 · 1 , τ2

α ·Σ
)

(2.11)

β ∼ N
(
β0 · 1 , τ2

β ·Σ
)

(2.12)

where Σ−1 = ρ(DW −W) + (1− ρ)I.

We use the same prior distributions for α0 and β0 and our variance parameters as in the

global shrinkage model in the previous subsection. For the additional spatial parameter ρ,

we choose a Beta(10, 10) prior distribution which has mean equal to 0.5 and a small variance

in order to avoid the endpoints of the interval [0, 1].

The posterior distributions for the spatial CAR model and the global shrinkage model

(Section 2.3.2) can be implemented via a Gibbs sampler (Geman and Geman, 1984). Im-

plementation details are given in sections A.2 and A.3 in the appendix.
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2.3.4. Allowing Neighborhood Border Weights to Vary

For most types of areal data, the weights W that encode the spatial connection between the

areal units are considered to be fixed and known. In our data context, the areal units are

neighborhoods and the weights W encode which neighborhoods share a border and hence

induce shrinkage on each other in our spatial CAR models outlined in Section 2.3.3.

However, within any large city, some borders between neighborhoods consist of natural or

artificial barriers such as rivers, highways or train tracks. These barriers could reduce the

similarity in crime trends between neighborhoods, and so we would not want to shrink

estimates across those barriers. The implication of these barriers for the spatial CAR

models in Section 2.3.3 are that some weights wij = 1 should really be wij = 0 since those

neighborhoods share a border that is actually a barrier.

Attempting to set which borders should actually be barriers manually would be tedious for

a large city and also require extensive domain knowledge and subjective decision making.

We instead prefer to infer these barriers from the data by allowing a subset of weights wij

to be random variables in our model.

Specifically, we consider the set of indices of pairs of neighborhoods which share a border

according to the geography of Philadelphia. The matrix W is symmetric so the random

variables wij and wji are considered to be the same object. We model the wij for neighbor-

hood pairs that share a border as Bernoulli random variables with an prior probability φ of

wij = 1. Any weights wij = 0 according to the geography of Philadelphia will remain fixed

at wij = 0 since we do not want to form connections between non-proximal neighborhoods.

We expect a priori that the probability φ will be close to 1, since relatively few borders

between neighborhoods actually should be barriers. For this reason we choose the prior for

φ to be a Beta(9, 1) distribution which has mean close to one and small variance.

Moreover, we expect that the spatial distribution of the neighborhood-specific crime levels
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(αi) may be different from the neighborhood-specific trends in crime over time (βi), so we

allow for different barriers when we model the distribution of α and β. In particular, we

consider two random matrices Wα and Wβ where a subset of the elements of these matrices

are random as described above: wαij |φα ∼ Bernoulli(φα) and wβij |φβ ∼ Bernoulli(φβ) for

neighborhood pairs (i, j) that share a border.

These two weight matrices then determine the local shrinkage of our spatial CAR model

from the previous subsection:

α |Wα ∼ N
(
α0 · 1 , τ2

α ·Σα

)
(2.13)

β |Wβ ∼ N
(
β0 · 1 , τ2

β ·Σβ

)
(2.14)

where Σ−1
α = ρ · (DWα −Wα) + (1− ρ)I and Σ−1

β = ρ · (DWβ −Wβ) + (1− ρ)I.

Allowing variable border weights can lead to over-parametrization since we are adding as

many parameters as the number of borders, which makes the shrinkage imposed by prior

parameters φα and φβ important. A more sophisticated approach, which is the focus of

ongoing work, would be to partition our areal units into clusters with barriers represented

as cluster boundaries.

To implement this extended model with some variable border weights, a step is added to

our Gibbs sampler that samples each border weight conditional on the current values of the

other model parameters. Details are given in sections A.2 and A.3 in the appendix.

The idea of detecting discontinuities at boundaries is often referred to as wombling after

the seminal work of Womble (1951) and has been very popular in the disease mapping

literature. However, most papers have approached detection of boundaries as a selection

problem that is performed after inference (see, e.g. Boots, 2001; Li et al., 2011; Banerjee

et al., 2012; Lu and Carlin, 2005; Lee and Mitchell, 2013).

In contrast, we incorporate the possibility of discontinuities at boundaries directly into our
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model through variable Wα and Wβ, which allows us to incorporate potential barriers into

our estimation of neighborhood-specific parameters α and β. Lee and Mitchell (2012) and

Lu et al. (2007) take a similar approach in the context of disease mapping, but with a more

elaborate model for P(wij = 1) that is a function of dissimilarity between covariate values

in units i and j.

In Section 2.4, the different models presented in this section are compared in terms of their

accuracy of their in-sample and out-of-sample predictive accuracy. We then visualize the

estimated trends in crime over time in Philadelphia and discuss several insights from our

results in Section 2.5.

2.4. Comparison of Predictive Accuracy

In the previous section, we outlined a no shrinkage model (Section 2.3.2) and several hier-

archical Bayesian models for estimating the neighborhood-level trend in crime over time,

including a global shrinkage model (Section 2.3.2), a spatial CAR models for local shrink-

age (Section 2.3.3), and finally an extension of the spatial CAR model to allow a subset of

border weights to vary (Section 2.3.4).

We now compare each of these model alternatives based on several measures of the accuracy

of their predictions on both in-sample and out-of-sample hold-out data. Recall that we have

10 years of crime data for the city of Philadelphia, from the beginning of 2006 to the end

of 2015. We estimate each model using the crime data for the first nine years (2006-2014).

We assess the in-sample accuracy of each model by computing the mean squared error of

the predictions of violent crime totals for 2014, which is a year that was included in model

estimation,

MSEin =
1

1336

1336∑
i=1

(yi,2014 − ŷi,2014)2. (2.15)
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We assess the out-of-sample accuracy of each model by computing the mean squared error

of the predictions of violent crime totals for 2015, which is a year that was not included in

model estimation,

MSEout =
1

1336

1336∑
i=1

(yi,2015 − ŷi,2015)2. (2.16)

To ensure our evaluation is not overly dependent on any idiosyncratic aspects of the 2015

data, we also calculate the cross-validated out-of-sample accuracy of each model by calcu-

lating the mean square error MSEtout when using year t as the hold out data in the same

way that 2015 is used as the hold out data in (2.16), i.e.

MSEcv =
1

10

10∑
t=1

MSEtout where MSEtout =
1

1336

1336∑
i=1

(yi,t − ŷi,t)2. (2.17)

In Table 1, we compare the predictive accuracy of four different models with neighborhood-

specific coefficients outlined in Section 2.3: 1. the time trend model (2.5) without shrinkage

between neighborhoods, 2. the global shrinkage model with priors (2.6) and (2.7), 3. the

local shrinkage model with spatial CAR priors (2.11) and (2.12) and 4. the local shrinkage

spatial CAR model with variable borders (2.13) and (2.14). For additional reference, we

also provide the mean square error for fitting a single trend (“Global α , β”) across the

entire city.

We see in Table 1 that the model with a global trend over time (“Global α , β”) for the entire

city has very poor predictive accuracy compared to the models that allow neighborhood-

specific time trends (“Separate αi , βi”).

Among the neighborhood-specific time trend models, the global shrinkage model has sub-

stantially lower out-of-sample mean square errors than the baseline time trend model with-

out any shrinkage between neighborhoods. The best in-sample mean squared error was

achieved by the model without shrinkage, as we expect from the least square method,
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Model MSEin MSEout % change MSEcv Moran’s I

Global α , β 0.3558 0.3694 +182.4 0.3043 -
Separate αi , βi Models

No Shrinkage (2.5) 0.0567 0.1308 - 0.1001 0.17
Global Shrinkage (2.6)-(2.7) 0.0698 0.1080 -17.4 0.0928 0.17
Spatial CAR (2.11)-(2.12) 0.0703 0.1052 - 19.5 0.0922 0.61
Variable Borders (2.13)-(2.14) 0.0706 0.1069 -18.2 0.0927 0.49

Table 1: Comparison of predictive accuracy between the different models outlined in Sec-
tion 2.3. The mean squared error for both in-sample and out-of-sample predictions are pro-
vided, as well as the percentage change in MSEoutrelative to model (2.5) without shrinkage.
We also provide the Moran’s I measure of spatial correlation calculated on the estimated
time trends βi from each model.

though at a cost of having the worst out-of-sample accuracy.

The model with local shrinkage via the spatial CAR prior further reduces the out-of-sample

mean square errors compared to the global shrinkage model. The model that allows variable

borders does not further improve the out-of-sample mean squared errors, though we explore

in Section 2.5.3 that it helps with the interpretation.

Table 1 also provides Moran’s I measure of spatial autocorrelation, calculated on the pos-

terior mean of the neighborhood-specific time trends (βi’s). We see that the spatial CAR

model induces a larger spatial correlation in the βi’s than the models with global shrinkage

or without shrinkage. The local shrinkage model has a Moran’s I value of 0.61 (s.e. =

0.016), which suggests there is substantial spatial autocorrelation in the change in crime

within Philadelphia.

In summary, allowing for local shrinkage of the neighborhood-specific crime trend coefficients

via the spatial CAR priors (2.11) and (2.12) leads to the best out-of-sample predictive accu-

racy. In Section 2.5, we visualize the parameters of this model and discuss the implications

of these results for crime in Philadelphia.

Although the variable border model extension does not improve out-of-sample predictive

accuracy, we will also see in Section 2.5 that visualizing the borders that have been turned

into barriers by this model provide insight into discontinuities in crime trends in the city of
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Figure 2: Estimated partial effects γd from four different models indicated in the legend.
For the no shrinkage model, we plot the maximum likelihood estimate and 95% confidence
interval. For three Bayesian shrinkage models, we plot the posterior mean and 95% posterior
interval.

Philadelphia.

2.5. Interpretation of Model Parameters

In Section 2.5.1, we examine the estimated partial effects for the static predictor variables

created from the data outlined in Section 2.2. We then visualize and compare the estimated

neighborhood-specific levels (αi’s) and time trends (βi’s) on crime from our different models

in Section 2.5.2. In Section 2.5.3, we examine the results from our model extension outlined

in Section 2.3.4 that allows a subset of neighborhood borders in Philadelphia to be estimated

as barriers. Finally, in Section 2.5.4 we discuss the neighborhoods with the most extreme

levels and changes in crime over time over the past ten years in Philadelphia.

2.5.1. Partial Effects of Static Predictors

Figure 2 gives the estimated partial effects γd for each static predictor variable d from the

four models outlined in Section 2.3. We provide additional numerical details in Table S1 of

appendix A.

We see that among the six predictor variables created in Section 2.2, only the segregation
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measure is not a significant predictor of crime. All predictor variables are on the same scale

and so we can directly compare the values of their partial effects.

We see that the strongest predictors of crime are total population and the commercial

versus residential proportion, with more populated and more commercial neighborhoods

being associated with higher crime. Income and poverty are also significantly predictive of

violent crimes but we must be more cautious about interpreting these partial effects given

the high collinearity between income and poverty. Each of these observations on the partial

effects γ is relatively consistent across the four models outlined in Section 2.3.

2.5.2. Visualizing Neighborhood-Specific Coefficients

Our primary interest in terms of interpretation are the estimated neighborhood-specific

coefficients, αi’s and βi’s, that represent the level of violent crimes and change in violent

crimes over time in Philadelphia, respectively.

In Figures 3 and 4, we give maps where each block group in Philadelphia is colored by

the estimated neighborhood-specific levels of crime α̂i and changes in crime over time β̂i

respectively, from the four models outlined in Section 2.3. We see substantial heterogeneity

between neighborhoods in Philadelphia, both in terms of the their estimated crime levels

(α̂i’s) and changes in crime over time (β̂i’s). Regardless of the model, most neighborhoods

in the city show decreasing trends in crime over time (negative β’s) with a small subset of

neighborhoods showing an increasing trend.

The shrinkage imposed by the global shrinkage model is more visually striking for the change

in violent crime over time than the overall level of crime. The maps of the α̂i’s from the no

shrinkage and global shrinkage models are almost indistinguishable in Figure 3 whereas the

map of the β̂i’s from the global shrinkage model has been shifted substantially compared to

the no shrinkage map in Figure 4. This observation suggests that there is more substantial

heterogeneity between neighborhoods in terms of their overall level of crime compared to

their change in crime over time.
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Figure 3: Maps of Philadelphia colored by the estimated intercept from our four different
models. Top-left: Maximum likelihood estimates of αi from the no shrinkage model (2.5).
Top-right: Posterior means of αi from the global shrinkage model (2.6)-(2.7). Bottom-
left: Posterior means of αi from the spatial CAR model (2.11)-(2.12). Bottom-right:
Posterior means of αi from the spatial CAR model with variable borders (2.13)- (2.14).
The black lines represent borders turned into barriers. These maps were created with the
R package ggmap (Kahle and Wickham, 2013).
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Figure 4: Maps of Philadelphia colored by the estimated slope on time from our four
different models. Top-left: Maximum likelihood estimates of βi from the no shrinkage
model (2.5). Top-right: Posterior means of βi from the global shrinkage model (2.6)-(2.7).
Bottom-left: Posterior means of βi from the spatial CAR model (2.11)-(2.12). Bottom-
right: Posterior means of βi from the spatial CAR model with variable borders (2.13)-
(2.14). The black lines represent borders turned into barriers. These maps were created
with the R package ggmap (Kahle and Wickham, 2013).
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This heterogeneity in the mean level of crime is expected as it is influenced by many years

of transformation in the city of Philadelphia that led to its current built and social en-

vironment. Differences in these overall spatial crime patterns can be addressed by urban

planners, whose effects are long-lasting (Johnson et al., 2008). In contrast, differences in the

trend over time identify shorter-term patterns, which can be addressed with interventions

by local police departments.

The overall level of crime also seems to have a greater inherent spatial correlation between

proximal neighborhoods than the change in crime over time. The Moran’s I values calculated

from the estimated α̂i’s are I = 0.33 for both the no shrinkage and global shrinkage models,

compared to the value of I = 0.17 from the estimated β̂i’s for those same models in Table 1.

This is clear also from the maps from the no shrinkage model (top left) in Figures 3 and 4:

the estimated β̂i’s are more “spotty” and less smooth than the corresponding map of the

α̂i’s.

However, once we build spatial correlation into our model via the spatial CAR prior (2.11)-

(2.12), the resulting β̂i’s are more spatially correlated than the resulting α̂i’s, as can be seen

in the lower left of Figures 3 and Figures 4 as well as the corresponding Moran’s I = 0.53

for the α̂i’s versus I = 0.61 for the β̂i’s. Note that all these reported Moran’s I values have a

standard error approximately equal to 0.016, and so they are all significantly different from

the null hypothesis of no spatial autocorrelation.

Although the smoother maps from the spatial CAR model (lower left of Figures 3 and 4)

ease interpretation by identifying larger regions of the city with similar crime dynamics,

there is the potential to over-shrink certain neighborhoods that should actually stand out

from their neighbors. In any large city, natural or artificial barriers such as rivers, highways

or rail lines create discontinuities between neighborhoods which should not be smoothed

over. In Section 2.5.3, we examine the results from our model extension that allows a subset

of borders between neighborhoods to be turned into barriers.
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Figure 5: Histograms of the posterior probabilities of each border being turned into a barrier.
Left: Probabilities for barriers for the αi’s; the threshold to identify the borders turned
into barriers is 0.6 (red line). Left: Probabilities for barriers for the βi’s; the threshold to
identify the borders turned into barriers is 0.5 (red line).

2.5.3. Borders turned into Barriers

In Section 2.3.4, we extended the spatial CAR model to allow a subset of the weights wij

to vary, which allows the borders (wij = 1) between some neighborhoods to be changed

into barriers (wij = 0); the latter prevent shrinkage between two bordering neighborhoods.

Our model has separate weight matrices Wα and Wβ, so a particular border can be turned

into a barrier either for the level of crime (αi’s) or the change in crime over time (βi’s) or

both. Using this model, we estimate the posterior probability that we change a border into

a barrier for each border between proximal neighborhoods in Philadelphia.

Figure 5 gives the distribution of the estimated posterior probability of a border being

turned into barrier for each border encoded in the weight matrices Wα and Wβ. These

distributions seem to have two components: a main mode representing the behavior of the

majority of the borders, which has a low probability of being turned into a barrier, and a

“tail” component which has a higher probability of being turned into a border.

It is clear that many more borders have a high probability of being a barrier for the level of

crime (αi’s) compared to the change in crime over time (βi’s). In other words, our variable

border model is detecting more discontinuities between bordering neighborhoods in the level
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of crime compared to the change in crime over time. In Section A.5.2 of the appendix, we

explore an alternative model that only allows variable borders for the mean level of crime.

In the lower right panels of Figures 3 and 4, we provide maps of Philadelphia where we have

highlighted any borders between neighborhoods that have been inferred by our model to

have a high probability of being barriers. These particular highlights are based on posterior

probabilities larger than 60% for Wα and larger than 50% for Wβ.

We see in the lower right panel of Figure 3 that barriers have been detected around several

parks including Fairmount Park, Wissahickon Valley Park, and Pennypack Creek Park

(indicated by the black numbers 1, 2 and 3 respectively in the lower right panel of Figure 3).

In these cases, our model has automatically detected several natural geographic structures

within Philadelphia as locations which have discontinuities in the level of crime.

We also see that some estimated barriers have isolated particular neighborhoods from their

proximal neighbors. For example, the neighborhood of Bridesburg (indicated by the black

number 4 in the lower right panel of Figure 4) seems to have a much more positive trend

on crime over time than its surrounding neighborhoods.

As barriers highlight the boundaries of regions that display differences in either in the level

of crime or the trend in crime over time, these barriers can be used by police departments

and city planners for delineating the possible limits of effectiveness for interventions or as

potential targets for interventions themselves.

2.5.4. Neighborhoods with Most Extreme Crime Trends

To further understand which regions of Philadelphia have the most extreme levels of crime

and trends in crime over time, we can examine the most extreme intercepts (αi’s) and

slopes (βi’s) found by our fitted models. Specifically, we focus on the estimated αi’s and

βi’s from the local shrinkage spatial CAR model (2.11)-(2.12) that had the best out-of-

sample predictive performance in Table 1.
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Figure 6: Top: The 50 neighborhoods with the largest α̂i’s (red) and 50 neighborhoods
with the smallest α̂i’s (green). Bottom: The 50 neighborhoods with the largest β̂i’s and 50
neighborhoods with the smallest β̂i’s. These maps were created with the R package ggmap

(Kahle and Wickham, 2013).

Figure 6 provides maps that highlight the most extreme (largest 50 and smallest 50) neigh-

borhoods in terms of the estimated level of crime (α̂i’s) and in terms of the estimated change

in crime over time (β̂i’s).

We see that the region of University City in West Philadelphia (black number 1 in the top

panel of Figure 6) is an interesting transitional area that contains both neighborhoods with

the highest and lowest levels of crime in the city. We also see that the area of Frankford

(black number 2 in the top panel of Figure 6) has neighborhoods with high levels of crime.

This area is a major transportation hub for the Northeast region of Philadelphia.

The SW region of Philadelphia, specifically the Elmwood and Eastwick neighborhoods

(black number 3 in the bottom panel of Figure 6) have seen some of the largest reduc-

tions in crime over the past decade in Philadelphia. We also see some regions of the city

that are showing increases in crime over that same time period, such as the Wissinoming

and Tacony neighborhoods (black number 4 in the bottom panel of Figure 6) that are just

to the northeast of the high crime neighborhoods of Frankford (black number 2 in the top
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panel of Figure 6).

In Section A.5 of the appendix, we provide additional visualizations of the neighborhood-

specific parameters that are significantly different from the overall mean across the city as

well as the widths of the credible intervals for these parameters.

2.6. Discussion

Reliable estimation of the change in crime over time at the local neighborhood level is a

crucial step towards a better understanding of the determinants of public safety in large

urban areas. With a focus on the city of Philadelphia, we have explored several Bayesian

approaches to modeling crime trends within the areal units of neighborhoods while sharing

information either globally or locally across the city.

Imposing local shrinkage between proximal neighborhoods via a spatial conditional autore-

gressive (CAR) prior gives the best out-of-sample predictions of violent crime compared to

models that impose global shrinkage or no shrinkage at all between neighborhoods. We also

explore allowing the weight matrix of our spatial CAR model to vary in order to detect

neighborhood borders that represent spatial discontinuities in the level of crime or change

in crime over time. In this way, we automatically detect several natural barriers in the

geography of Philadelphia. Our model estimates also identify the regions of Philadelphia

with the most extreme levels of violent crime as well as the largest increases and reductions

in crime over the period of 2006-2015.

41



Chapter 3

Bayesian Clustering with Particle Optimization

3.1. Introduction

Accurate modeling of urban crime dynamics benefits many constituents: law enforcement

officials can make more informed decisions about how to deploy resources to ensure public

safety, urban planners can better understand how socio-economic factors and the built envi-

ronment affect crime, and city officials can develop community programs and interventions

to improve the overall quality of life in the city. In this work, we study how crime has

evolved in the city of Philadelphia between 2006 and 2017 with a focus on finding clusters

of neighborhoods with similar crime dynamics.

Bayesian hierarchical modeling is a very natural way to study crime at the neighborhood

level as it allows us to “borrow strength” between spatially adjacent neighborhoods. In

fact, Balocchi and Jensen (2019) have demonstrated that Bayesian models that encourage

spatial shrinkage can yield more accurate predictions than models that do not introduce

dependencies between parameters from adjacent neighborhoods. Following that work, we

propose a model that extends Bernardinelli et al. (1995)’s linear model to crime incidents

with spatially varying intercepts (mean level of crime) and spatially varying slopes (time

trend).

Priors based on conditionally auto-regressive (CAR) models (Besag, 1974) are workhorses in

the Bayesian spatial statistics literature that encourage shrinking each neighborhood’s pa-

rameters towards the average value of the parameters from adjacent neighborhoods. Though

these models are an intuitive and popular way to “share information” between spatially

Adapted from a research article:
Balocchi, C., Deshpande, S. K., George E. I. and Jensen, S. T. (2019) “Bayesian Spatial Clustering of
Crime in Philadelphia with Particle Optimization” arXiv 1912.00111
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adjacent regions, they can introduce a level of smoothness at odds with the realities of

complex urban environments. In fact, as we will see in Section 3.2, while crime incidents

in Philadelphia display considerable spatial correlation, there are also many sharp spatial

discontinuities. This is because geographic aspects of the city, such as major streets, parks,

and rivers, and latent socioeconomic divisions can create barriers that may be associated

with discontinuities in crime patterns.

In the context of crime modeling, using a CAR prior without accounting for potential

discontinuities can lead to poor estimation of crime around these geographic or socioeco-

nomic barriers. Although manually adjusting the CAR prior to prevent smoothing over

these boundaries is conceptually simple, it presupposes knowledge about the location of

these discontinuities, which are often latent or unknown. A far more elegant and agnostic

approach is to use the data itself to identify the discontinuities.

There is a very rich literature on data-adaptive strategies for detecting discontinuities at

the border between adjacent neighborhoods, also known as wombling. One approach to

wombling involves first fitting a simple model that does not account for potential discon-

tinuities and then identifying jumps in the fitted values (see, e.g., Boots (2001), Li et al.

(2011), Banerjee et al. (2012), Lu and Carlin (2005), and Lee and Mitchell (2013)). Al-

ternatively, many authors directly model uncertainty about which borders correspond to

sharp discontinuities within larger Bayesian hierarchical models (see, e.g., Lee and Mitchell

(2012), Lu et al. (2007), and Balocchi and Jensen (2019)). While directly modeling the un-

certainty in discontinuity locations is intuitively appealing, these latter models are heavily

over-parametrized; in fact, they introduce one latent parameter for each pair of adjacent

neighborhoods.

Rather than look for individual discontinuities between pairs of neighborhoods, we instead

aim to identify clusters of neighborhoods that exhibit similar crime dynamics. Compared

to wombling, clustering encourages dimensionality reduction while maintaining model in-

terpretability and flexibility. In this work, we propose a “CAR–within–clusters” model
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where we introduce two latent spatial partitions of neighborhoods in Philadelphia, one for

the mean levels of crime and one for the temporal trends. We then specify separate CAR

priors on the neighborhood-specific parameters within each cluster of each partition. We

describe our data and introduce this model in Section 3.2.

Like similar spatial clustering approaches (see, e.g., Knorr-Held and Raßer (2000), Denison

and Holmes (2001), Feng et al. (2016), and references therein), we treat parameters arising

from different clusters independently a priori. However, unlike these works, we do not

assume that all parameters within a cluster are equal. Instead, we allow the parameters to

vary smoothly within each cluster. Our approach combines positive aspects of clustering and

wombling: we are able to find areas displaying different crime dynamics and simultaneously

interpret borders between clusters as barriers corresponding to spatial discontinuities.

In our implementation, we have three primary tasks: (i) identify the two underlying spatial

partitions, (ii) estimate the neighborhood-level parameters, and (iii) make predictions of

future crime incidents while accounting for our uncertainty about the partitions. These

goals are complicated by the combinatorial vastness of the latent product space of spatial

partitions, rendering typical stochastic search techniques computationally prohibitive. We

instead focus on posterior optimization. However, rather than simply finding the maximum

a posteriori (MAP) partitions, we propose an extension of Ročková (2018)’s ensemble op-

timization framework that simultaneously identifies multiple partitions with high posterior

probability by solving a single optimization problem. In Section 3.3, we show that solv-

ing this problem is formally equivalent to finding a particular variational approximation

of the discrete posterior distribution of the pairs of partitions. We introduce a new local

search strategy that, at a high level, runs several greedy searches that are made “mutu-

ally aware” by an entropy penalty. This penalty promotes diversity among the estimated

partitions by discouraging different search paths from visiting the same point in the la-

tent discrete space. By identifying several high posterior probability partitions we can

easily incorporate uncertainty about the latent clusterings into our estimation of the pa-
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rameters and prediction, with Bayesian Model Averaging (BMA; Raftery et al. (1997)).

In Section 3.4, we illustrate our proposed methodology on simulated data before applying

it to the Philadelphia data in Section 3.5. We conclude with a discussion of our results

and an outline of potential future directions in Section 3.6. A software implementation

of our method and all code and data to replicate the results in this work are available at

github.com/cecilia-balocchi/particle-optimization.

3.2. Data and the “CAR–within–clusters” Model

For the first time in decades, Philadelphia is experiencing population growth and its built

environment is rapidly evolving; this transformation makes it an interesting real-time case

study for examining how crime evolves over time. Our crime data comes from opendataphilly.

org, where the Philadelphia Police Department publicly releases the location, time, and type

of each reported crime in the city. While there has been an overall decrease in the total

amount of crime in the city over the last decade, we can obtain a more nuanced understand-

ing by examining the temporal trends at a local neighborhood level. Our analysis focuses on

violent crimes, which include homicides, rapes, robberies, and aggravated assaults (FBI),

aggregated at the census tract level. In all, Philadelphia is divided into N = 384 cen-

sus tracts, which we treat as large neighborhoods in our analysis, as census tracts contain

approximately 4,000 inhabitants each.

For the years between 2006 (t = 0) and 2017 (t = 11), let ci,t be the total number of violent

crimes reported in tract i during year t. The distribution of crime counts ci,t displays

considerably skewness. Similar to Balocchi and Jensen (2019), rather than modeling ci,t

directly, we work with an inverse hyperbolic sine transformation (Burbidge et al., 1988a) of

the violent crime counts:

yi,t = log
(
ci,t + (c2

i,t + 1)1/2
)
− log(2).

This transformation is a close approximation of log(ci,t) but is also well-defined for neigh-
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borhoods that had a crime count of zero in certain years.

3.2.1. Model

To study the crime dynamics at the neighborhood level in Philadelphia, we consider a simple

linear regression model:

yi,t = αi + βi(t− t) + εi,t; εi,t ∼ N(0, σ2) (3.1)

where time t has been centered, so that the parameters αi and βi respectively represent

the mean level of crime and the trend over time of crime in census tract i. Linear models

are typically employed when the number of time points is small or moderate (Bernardinelli

et al., 1995; Anderson et al., 2017).

We can obtain an initial estimate of the average levels αi and time trends βi of crime by

treating each neighborhood independently and computing the maximum likelihood esti-

mates (MLEs) within each neighborhood. Figure 7 displays these estimates and reveals

that the broad negative time trend in crime is not uniform across the city. In fact, in a

small number of neighborhoods, crime has actually increased over the last decade.

We also see in Figure 7 that, with few notable exceptions, spatially adjacent neighbor-

hoods tends to have similar MLEs, suggesting a high degree of spatial correlation in the

neighborhood-level crime dynamics. We take a hierarchical Bayesian approach in order

to “borrow strength” between neighborhoods that involves specifying a prior distribution

on the parameters α = (α1, . . . , αN ) and β = (β1, . . . , βN ). Because we expect the tract-

specific parameters to display some spatial continuity, we use priors that explicitly introduce

dependence between parameters from neighboring tracts.

Conditionally autoregressive (CAR) models are a popular class of such priors and we use

a version introduced in Leroux et al. (2000). Letting W = (wi,j) be a binary adjacency

matrix with wi,j = 1 if and only if neighborhoods i and j share a border, we say that the
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Figure 7: Visualization of the maximum likelihood estimates of the tract-level intercepts α (left
panel) and time-trends β (right panel) for the model defined in Section 3.2.1

vector θ = (θ1, . . . , θn) follows a CAR model with grand mean θ and variance scale τ2 if

and only if all of the full conditional distributions have the form

θi | θ−i, θ, τ2 ∼ N

(
(1− ρ)θ + ρ

∑
j wi,jθj

1− ρ+ ρ
∑

j wi,j
,

τ2

1− ρ+ ρ
∑

j wi,j

)
.

In this CAR model, the conditional mean of θi | θ−i is a weighted average of the grand

mean θ and the average of the θj ’s from the neighborhoods that border neighborhood i. The

degree to which θi is shrunk toward either of these targets is governed by a parameter ρ,

which is typically set by the analyst, and the number of neighbors. These full conditionals

uniquely determine the joint distribution θ ∼ N(θ1n, τ
2ΣCAR) where

ΣCAR =


[ρW ? + (1− ρ)In]−1 if n ≥ 2

1
1−ρ if n = 1

,

1n is the n-vector of ones, and W ? is the unweighted graph Laplacian of the adjacency

matrix W . For compactness, we will write θ | θ, τ2 ∼ CAR(θ, τ2,W ).
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However, cities typically contain many geographic and social barriers like rivers and high-

ways that manifest in sharp spatial discontinuities. In the presence of these discontinuities,

a naively specified CAR model can induce a level of spatial smoothness among the pa-

rameters at odds with the data. To avoid this behavior, we seek clusters of parameters

that demonstrate considerable spatial continuity within but not between clusters. We in-

troduce two latent partitions of [N ], γ(α) and γ(β), where γ(·) = {S(·)
1 , . . . , S

(·)
K(·)}. We refer

to the sets S
(·)
k as clusters and restrict attention to partitions consisting of clusters of spa-

tially connected neighborhoods. We denote the set of all such partitions by SP and let

γ := (γ(α), γ(β)) be the pair of latent spatial partitions underlying the mean level of crime

and the time trend of crime across all neighorhoods. In what follows, we will simply refer

to γ as a particle.

To simplify our presentation, we describe only the prior over the mean levels of crime

α; we place an analogous prior on the time trends β. We place independent CAR priors

on the collections αk = {αi : i ∈ S
(α)
k }, so that the joint prior density π(α | γ(α), σ2)

factorizes over the collection of all clusters: π(α | γ(α), σ2) =
∏K(α)

k=1 π(αk | σ2). To this

end, we introduce a collection of grand cluster means α = {α1, . . . , αK(α)} and model

αk | αk, σ2 ∼ CAR(αk, a1σ
2,W

(α)
k ), where W

(α)
k is the sub-matrix of W whose rows and

columns are indexed by the cluster S
(α)
k . We further place independent N(0, a2σ

2) priors

on the grand cluster means αk and place a fully-specific prior Πγ on γ(α). In Sections 3.4

and 3.5, we consider two different priors for the latent partitions. The first is a truncated

Ewens-Pitman prior with probability mass function

π(γ) ∝ ηK
K∏
k=1

(nk − 1)!× 1(γ ∈ SP). (3.2)

The second is a truncated uniform prior that assigns equal prior probability to each γ ∈ SP.

We note here, however, that the computational strategy introduced in Section 3.3 will work

for general priors. We complete our hierarchical prior with an Inverse Gamma prior on the

residual variance σ2 ∼ IG
(
νσ
2 ,

νσλσ
2

)
.
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To summarize, our model is

γ(α), γ(β) iid∼ Πγ

σ2 ∼ IG

(
νσ
2
,
νσλσ

2

)
α1, . . . , αKα | γ(α), σ2 iid∼ N(0, a2σ

2)

β1, . . . , βKβ | γ
(β), σ2 iid∼ N(0, b2σ

2)

αk | αk, σ2, γ(α) ∼ CAR(αk, a1σ
2,W

(α)
k ) for k = 1, . . . ,Kα

βk′ | βk′ , σ2, γ(β) ∼ CAR(βk′ , b1σ
2,W

(β)
k′ ) for k′ = 1, . . . ,Kβ

yi,t | α,β, σ2 ∼ N(αi + βi(t− t), σ2)

(3.3)

The high degree of conditional conjugacy in (3.3) enables us to derive analytic expressions

for quantities such as the marginal likelihood p(y | γ) as well as the conditional posterior

expectations E[α,β | γ,y]. The availability of these expressions will be crucial for the

posterior exploration strategy we develop below.

Given the residual variance σ2 and latent partitions γ(α) and γ(β), parameters in different

clusters are conditionally independent. In other words, our model falls with the class of

conditional product partition models (PPMs) that have been widely used in Bayesian spatial

statistics (see, e.g., Knorr-Held and Raßer (2000), Denison and Holmes (2001), and Feng

et al. (2016)). Unlike these papers, however, we are interested in recovering two latent

partitions, one each for the mean levels and time-trends within each census tract. In this

way, our model is similar to Anderson et al. (2017), who also seek two distinct partitions of

the set of neighborhoods. However, unlike Anderson et al. (2017), who limit attention to

partitions containing five or fewer clusters for computational simplicity, we do not need to

impose any a priori restriction on the number of clusters.
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3.3. Posterior Exploration and Summarization

Recall that we have three simultaneous tasks: (i) identify promising particles γ = (γ(α), γ(β)),

(ii) estimate the mean-levels α and time trends β of crime in each neighborhood, and (iii)

make predictions about future incidents of crime in each neighborhood. These latter two

tasks can generally be expressed as evaluating posterior expectations E[f(α,β) | y] where

f is any functional of interest. The combinatorial vastness of the space SP2, which contains

all possible pairs of partitions, renders it impossible to enumerate all particles for even small

values of N. As a result, we cannot compute the posterior probability π(γ | y) exactly.

It is tempting to resort to Markov Chain Monte Carlo (MCMC) simulations to approximate

expectations E[f(α,β) | y]. We could, for instance, proceed in a Gibbs fashion, alternat-

ing between updating the two partitions in each γ and updating continuous parameters

(α,β, σ2), while holding the rest fixed. Unfortunately, because we must explore a vast

space of pairs of partitions, such MCMC simulations may require a prohibitive amount of

time to mix. To get around this difficulty, Anderson et al. (2017) arbitrarily restricted

attention to partitions with no more than three to five clusters each. Even with such a

restriction, which we will not impose, it is still quite difficult to distill the thousands of

resulting draws of γ into a single point estimate and to quantify parameter and partition

uncertainty.

A popular alternative approach is posterior optimization, which usually focuses on iden-

tifying the maximum a posteriori (MAP) particle γ̂MAP or some other decision-theoretic

optimal point estimate (see, e.g., Lau and Green (2007)). One then estimates the marginal

expectation E[f(α,β) | y] with a “plug-in” estimator E[f(α,β) | y, γ̂MAP ]. Though this

procedure might be substantially faster than MCMC, especially if the marginal likelihood

p(y | γ) possesses certain ordering properties (Dahl, 2009), it completely eschews explo-

ration of the uncertainty about γ. As a result, the natural “plug-in” estimator E[f(α,β) |

y, γ̂MAP ] may result in over-confident inference about the function f.
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Notice, however, that this plug-in estimator may be viewed as a particular instantiation of

Bayesian Model Averaging (BMA) (Raftery et al., 1997; Hoeting et al., 1999). At a very

high-level, BMA aims to approximate the full marginal expectation

E[f(α,β) | y] =
∑
γ

π(γ | y)E[f(α,β) | y,γ],

by first identifying some small subset Γ of models and then evaluating the more manageable

sum

fΓ =
∑
γ∈Γ

πΓ(γ | y)E[f(α,β) | y,γ],

where πΓ is the restriction of the posterior π(γ | y) to the set Γ.

Intuitively, the better the restricted posterior πΓ approximates the full posterior π(γ | y),

the closer fΓ will be to the targeted marginal expectation E[f(α,β) | y]. So rather than

just using the top γ, a natural extension of the MAP plug-in is to use the top L > 1 γ’s.

Specifically if we let ΓL = {γ(1), . . . ,γ(L)} be the L particles with largest posterior mass,

we consider

fL =

L∑
`=1

π̃(γ(`)|y)E[f(α,β) | γ(`),y],

where π̃(·|y) is the truncation of π(γ|y) to ΓL. In contrast to the MAP plug-in estimator, fL

averages over more of the particle selection uncertainty and we might reasonably expect it to

be a better approximation of the marginal posterior mean E[f(α,β) | y]. Of course, in order

to compute fL exactly, we know which L particles have the most posterior probability. In the

next subsection, we introduce a general strategy for identifying ΓL based on approximating

π(γ | y) without stochastic search.

3.3.1. A Variational Approximation

Before proceeding, we introduce a bit more notation. For any collection of L particles

Γ = {γ1, . . . ,γL} and vector w = (w1, . . . , wL) in the L-dimensional simplex, let q(· | Γ,w)

be the discrete distribution that places probability w` on the particle γ`. Following Ročková
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(2018), we will refer to the collection Γ as a particle set and w as importance weights. LetQL

be the collection of all such distributions supported on at most L particles. Finally, for each

λ > 0, let Πλ be the tempered marginal posterior with mass function πλ(γ) ∝ π(γ | y)
1
λ .

Note that the particles in ΓL, which are the L particles with largest posterior mass, are also

the L particles with largest tempered posterior mass for all λ. The following proposition

provides the foundation for identifying this collection.

Proposition 1. Suppose that π(γ | y) is supported on at least L distinct particles and that

πλ(γ) 6= πλ(γ ′) for γ 6= γ ′. Let q?λ(·|Γ?(λ),w?(λ)) be the distribution in QL that is closest

to Πλ in a Kullback-Leibler sense:

q?λ = arg min
q∈QL

{∑
γ

q(γ) log
q(γ)

πλ(γ)

}
.

Then Γ?(λ) = ΓL and for each ` = 1, . . . , L, w?` (λ) ∝ π(γ(`)|y)
1
λ

Proof. See Section B.1 of the appendix.

In other words, we can find ΓL by finding an approximation of any tempered posterior Πλ.

This is equivalent to solving

(Γ?(λ),w?(λ)) = arg max
(Γ,w)

{
L∑
`=1

w` log p(y,γ`) + λH(Γ,w)

}
, (3.4)

whereH(Γ,w) = −Eq[log q(·|Γ,w)] is the entropy of the approximating distribution q(·|Γ,w).

Before proceeding, we stress that we are not finding a variational approximation of π(α,β, σ2 |

y), the marginal posterior distribution of the continuous parameters of interest. Instead, we

approximate the discrete posterior distribution π(γ | y), which places positive probability

over all particles γ = (γα, γβ), with another discrete distribution q? that places positive

probability on only L particles.

We pause briefly to reflect on the two terms in Equation (3.4). The first term is, up to
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an additive constant depending only on y, the w-weighted average of the height of the

log-posterior at each particle in the particle set Γ. This term is clearly maximized when

all of the particles in Γ are equal to the MAP. On the other hand, the entropy H(Γ,w) of

the approximating distribution is maximized when all of the particles in Γ are distinct and

each w` = L−1. The penalty term λ, which we may also view as an inverse temperature,

balances these two opposing forces.

3.3.2. Particle Optimization

Finding the global optimum of (3.4) exactly is practically impossible, given the enormous

size of the set of all possible particle sets Γ. Instead, we deploy a coordinate ascent strategy:

starting from an initial particle set Γ and initial weight vector w, we iteratively update one

of w and Γ until we reach a stationary point.

We initialize the particle set by randomly drawing particles (γ̂
(α)
K , γ̂

(β)
K′ ) with replacement

where γ̂
(α)
K is the partition obtained by running k-means on the maximum likelihood es-

timates of α with k = K clusters. We let K,K ′ = 1, . . . , blog(N)c. In this initialization,

the probability of drawing particle (γ̂
(α)
K , γ̂

(β)
K′ ) is proportional to its marginal posterior

probability. Our initialization allows our algorithm to pursue several search directions si-

multaneously but also allows for some redundancy in the initial particle set. In regions of

high posterior probability, such redundancy allows multiple particles to search around a

dominant mode, providing a measure of local uncertainty.

Ročková (2018) introduced essentially the same family of optimization problems to identify

sparse high-dimensional linear regression models and described a similar coordinate ascent

strategy that iteratively updated w and Γ. In that work, γ was a binary vector indicating

which variables to include in the model and the continuous parameters conditional on γ were

modeled with continuous spike-and-slab priors in the style of George and McCulloch (1993).

To update each individual γ` ∈ Γ, Ročková (2018) restricted attention only to binary vectors

which differed in one coordinate. While it is tempting to update each partition in our setting

53



similarly by re-allocating a single neighborhood to a new or existing cluster, such a strategy

is prone to lead to local entrapment.

Indeed, such one-neighborhood updates directly parallel conventional Gibbs samplers for

Dirichlet process mixture models (i.e. Algorithms 1 – 8 in Neal (2000)). It is well-known

(Celeux et al., 2000) that these samplers can mix very slowly, as their incremental nature

make it virtually impossible to pass through regions of low probability between partitions

that have similar probability but differ in the cluster assignment of multiple units. In our

optimization setting, such a restrictive search strategy results in premature termination at

a sub-optimal ensemble Γ. Instead, a more promising strategy for navigating the space of

partitions is to allow multiple elements to be re-allocated at once (Jain and Neal, 2004a).

To this end, we consider both fine transitions, which re-allocate a single neighborhood to a

new or existing cluster (thereby enabling the creation or removal of “islands”) and coarse

transitions, which simultaneously re-allocate multiple neighborhoods.

We have two types of coarse transitions, displayed in Figure 8. The first exchanges multiple

neighborhoods simultaneously across a border between adjacent clusters, while the second

splits an existing cluster into several sub-clusters and merges some or all of the newly created

sub-clusters with other existing clusters. We also consider “merge” moves in which two

existing adjacent clusters are combined into a single cluster. These merge moves allow for

the removal of islands and the reversal of splits. Sometimes, removing a single neighborhood

from a cluster leaves the resulting cluster disconnected. When this happens, we treat the

resulting components as individual clusters.
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Figure 8: The three broad types of transitions that we consider. An “island” transition
(a) removes a single neighborhood from an existing cluster (the lower left orange cluster)
and creates a new singleton cluster. A “border” transition moves all neighborhoods at the
interface of two adjacent clusters from one cluster to the other. In (b), the neighborhoods
moved from the orange cluster to the blue cluster are shaded. The last type of transition
(c) first splits an existing cluster (the left cluster in (c)) into multiple parts and then merges
some or all of the new sub-clusters into already existing clusters.

In general, we do not attempt all possible coarse and fine transitions while updating a

partition. Indeed, there are O(n) possible fine moves and if we allow each of K existing

clusters to be split into up to Knew sub-clusters, there can be up to O(K2 + K × KK
new)

possible coarse transitions. Rather than enumerating all of these transitions, we restrict

attention to a much smaller set using several heuristics outlined below. For brevity, we

describe these heuristics for transitions for γ(α); we use exactly the same heuristics for γ(β).

The conditional conjugacy of our “CAR–within–cluster” model allows us to quickly compute

E[αi | γ,y] and E[αk | γ,y]. We use these conditional means as running estimates to propose

transitions. For each cluster k, we can identify its nearest neighbor k′, whose estimated

grand cluster mean αk′ is closest to the estimated grand cluster mean of cluster k, αk. We

then propose exchanging neighborhoods from k across the border between clusters k and

k′. In this way, we only consider O(K) coarse transitions of the first type. For coarse moves

of the second type, which first split an existing cluster into many pieces, we cap the number

of new sub-clusters at Knew = 5. To generate these sub-clusters, we run both k-means and
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spectral clustering on the running estimates of the αi’s within the cluster. We also propose

splits by removing the top or bottom 5% of these estimates.

Once we split a single cluster into many new sub-clusters, we can identify the nearest

neighbor of each sub-cluster among the other existing clusters based on the estimated grand

cluster means. We then propose a sequence of merges where a new sub-cluster is merged

into its nearest neighbor only if all sub-clusters that are closer to their own nearest neighbors

are also merged. For fine transitions, we initially only attempt to remove neighborhood i

from its current cluster and move it to a new singleton if its estimated αi is in the top or

bottom 5% of the distribution of estimates within the cluster. Following these heuristics, we

consider on the order of N/10 fine transitions and O(K+K×K2
new) total coarse transitions

while updating a single partition in our ensemble. During our coordinate ascent algorithm,

if we find that none of these transitions are accepted, we then try all N fine moves. This last

check ensures that our algorithm converges locally in the sense that no one-tract update to

an individual partition will result in a higher objective. While these heuristics are somewhat

arbitrary, we have found that they work quite well in practice.

3.4. Synthetic Data Evaluation

To investigate the behavior of our proposed optimization procedure, we consider a simpler

model of crime yi,t = αi + σεi,t and we place our CAR–within–cluster prior over α. We

simulate data on a 20 × 20 grid of spatial units partitioned into four clusters of sizes 12,

188, 100, and 100. Figure 9 shows the four clusters in the true partition along with three

of the different specifications of α.
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Figure 9: True data generating partition and three different settings of α values. Going
from left to right, the distances between the average of the αi’s within each cluster gets
progressively smaller. The color of each square corresponds of the true value of αi used in
the synthetic data generating process.

Figure 10 shows the top three partitions recovered when we run our procedure in each of the

high, moderate, and low separation settings with two different entropy penalty parameters

λ = 1 and λ = 100. We placed a truncated Ewens-Pitman prior (3.2) on the latent partition

with η = 1. For this demonstration, we fixed L = 10, ρ = 0.9 and set the remaining hyper-

parameters according to the heuristics detailed in Section B.2 of the appendix.

It is reassuring to see that when the clusters are well-separated, our method identifies the

true partition as the top particle for both values of λ and that when the clusters are only

moderately separated, the top partitions identified are all quite close to the true partition

that generated the data. On the other hand, when there is very little separation between

the clusters, the partitions returned by our method are visually quite far from the truth. It

turns out that these partitions had substantially more posterior probability than the true

partition in this setting.

We know from Proposition 1 that the globally optimal particle set Γ?L must (i) contain

exactly L particles and (ii) be identical for all values of λ. We see in Figure 10 that in each

of the three settings, the top particles identified for λ = 1 and λ = 100 are different. In fact,

in the high separation setting, all of the particles in our particle set collapsed to the true

partition when λ = 1. Additionally, in the medium separation setting, the second partition
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Figure 10: Top three partitions recovered by our particle optimization procedure across
different levels of separation of α and values of λ. The color of each square of the recovered
particles corresponds to the value of the posterior mean E[αi | y,γ]. Note, in the high
separation setting with λ = 1, our final particle set contained 10 copies of the same partition.

identified when λ = 1 is not contained in the particle set obtained when λ = 100, despite

having more posterior probability than all but the top partition in the latter particle set.

This behavior, which is at odds with what might be expected from Proposition 1, highlights

the local nature of our optimization algorithm.

Recall that the entropy term in Equation (3.4) attempts to offset any potential decrease in

posterior probability that accompanies a transition away from a high probability particle set

already present in the ensemble to a new particle. The fact that the particle set identified

in the high separation setting with λ = 1 displays extreme redundancy – all of the particles

collapsed to the same partition – suggests that this entropy term may not always be sufficient

to identify L distinct partitions.

This is not altogether surprising: being bounded from above by logL, the changes in entropy

encountered by our algorithm are typically orders of magnitude smaller than changes in the
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w-weighted (unnormalized) log-posterior. As we increase λ from 1 to 100, however, we find

that our procedure recovers L = 10 distinct models. In all three settings, we find that

some of the particles identified with one choice of λ may not be identified with the other

choice of λ, despite having higher posterior probability than many of the particles found

with the latter λ. This could also be an artifact of the local, non-reversible, transitions that

we consider. Typically, with larger values of λ, particles are encouraged to drift to regions

of lower posterior probability more forcefully than with lower values of λ. Moreover, once

in those regions, it is typically quite difficult for a particle to “double back” and return to

a previously visited state with more posterior probability.

To assess the estimation and partition selection performance of our proposed method quan-

titatively, we computed the root mean square error (RMSE) of the proposed BMA estimator

and the Rand index (Rand, 1971) between the top partition recovered and the true partition

averaged over 20 simulated datasets for different choices of cluster separation. The Rand

index is defined as the proportion of pairs of elements that are clustered together in both

partitions, with values close to one indicating a high degree of similarity between the parti-

tions. Figure 11 shows the average estimation and selection performance for our method run

with λ = 1 along with the following four competitors: (i) the “1-Cluster” model that places

all tracts into a single cluster, (ii) the “N-Clusters” model that places all tracts into single-

ton clusters, (iii) running k-means on the collection of MLE’s α̂i = yi,·, and (iv) running

spectral clustering on these tract averages. When running k-means and spectral clustering,

we varied the number of clusters from one to ten. For k-means, we selected the number of

clusters using the popular elbow method, and for spectral clustering, we found the number

of clusters which minimized the total within-cluster sum of squares. We then computed the

conditional posterior expectation E[α | y, γ̂] based on the partition γ̂ estimated from each

of the k-means and spectral clustering procedures. Across our simulations, the estimation

and partition selection performance of our method with λ = 100 was virtually identical to

the performance with λ = 1.
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Figure 11: The estimation and partition selection performance, averaged over 20 Monte
Carlo simulations, of our method run with λ = 1 and several competitors across a range of
cluster separations.

Immediately we see that, in terms of estimation performance, our procedure is very similar

to k-means for non-zero cluster separations. In a certain sense, this behavior is entirely

expected when the cluster separation is high: the partition found by k-means in these set-

tings was usually identical to or very close to the true partition, resulting in Rand indices

very close to one. However, when the cluster separation is low, our proposed procedure,

which identifies several high posterior probability partitions and averages over them, per-

forms much better than k-means, which attempts only to identify a single partition with no

reference to the posterior of interest. When there is in fact no separation between the clus-

ter means, the top partition identified by our procedure was always equal to the partition

that placed all tracts in a single cluster. In other words, when there truly was no difference

between the cluster means, not only does the trivial “1-Cluster” partition have substantially

higher posterior probability than other partitions but our particle optimization strategy is

also able to recover this partition reliably. This adaptation, in turn, results in excellent

estimation performance in this setting.
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Interestingly, our method outperforms spectral clustering, in terms of RMSE, except in one

setting where the separation between clusters was low but non-zero. In fact, this was the

same low separation setting from Figures 9 and 10. As seen in Figure 10, the partitions

identified by our method are all quite different than the true partition. It turns out that

in this setting, the partition identified by spectral clustering divided the tracts into four

equally sized 10 × 10 grids; see Figure S1 in Section B.3 of the appendix. This partition

is substantially closer to the true partition and it is therefore perhaps not surprising that

spectral clustering achieved slightly better RMSE in this setting.

In Figure 11, we showed the RMSE for the full BMA estimator that averaged over all of

the particles recovered by our method. Especially when the separation between clusters

was very large, often the top partition identified had orders of magnitude more posterior

probability than the other partitions identified. This raises a natural question: could we

achieve somewhat better estimation performance by averaging over only a subset of the

partitions identified by our method instead of averaging over all of them? In our experi-

ments, we found that it was usually better to average over multiple partitions instead of

focusing on the MAP plug-in. However, the RMSE was not monotonic in the number of

particles averaged over. We also found that the change in RMSE as we varied the number

of particles averaged over was quite small, typically of order 10−4 or less.

3.5. Clustering Crime Dynamics in Philadelphia

As described in Section 3.2, we model the transformed number of violent crimes yi,t in

neighborhood i at time t as yi,t = αi + βi(t − t) + εi,t. We further wish to identify two

partitions of neighborhoods: one, γ(α), that clusters together neighborhoods with similar

mean levels of crime αi, and the other, γ(β), that clusters together neighborhoods with

similar time trends βi.

For our analysis of the Philadelphia crime data, we consider two priors on the partitions

γ(α) and γ(β): the Ewen-Pitman prior (3.2) with hyper-parameter η = 5 and the uniform
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prior, both of which are truncated to the set of spatially connected partitions SP. In this

analysis, we set L = 10, λ = 100 and set the remaining hyper-parameters using the heuristics

described in Section B.2 of the appendix. The top panel of Figure 12 shows the top three

particles recovered when we placed independent Ewens-Pitman priors on each of γ(α) and

γ(β) while the bottom panel of the figure displays the top three particles recovered with

uniform priors on the latent partitions. In Figure 12 we display the top particles as colored

maps in which thick lines depict borders between clusters and the color of each neighborhood

corresponds to the conditional mean of the αi’s or βi’s given the partitions γ(α) and γ(β).

To illustrate the differences between the identified partitions, we have added greyscale

“difference plots” between the colored plots that shade the neighborhoods that are clustered

differently. When two partitions are equal, no neighborhoods are shaded in the difference

plot.

Similar to our synthetic experiments in Figure 10, some of the identified partitions differ

only in the cluster assignment of a small number of neighborhoods. For instance, when we

placed a Ewens-Pitman prior on the time-trend partition γ(β), the top two particles differ

in their assignment of a single neighborhood in Northeast Philadelphia. As seen in the

second row of Figure 12, while the top particle isolates this neighborhood (labelled A in

the figure) in a singleton cluster with a strongly decreasing time trend (ie. large negative

βi estimate), the second particle places this neighborhood in a larger cluster with only a

moderately decreasing time trend.

Unlike our synthetic experiments, however, some of the identified partitions of the real data

differ substantially. This is especially pronounced in the time trend partitions identified

when we placed a uniform prior on γ(β) (bottom row of Figure 12). The first and third

particles, for instance, differ substantially in their clustering of neighborhoods in South and

West Philadelphia. This difference is most apparent in the large neighborhood (labelled

B in the figure) containing the southern sections of the Schuylkill river: the first particle

estimates a moderately increasingly time trend in this neighborhood and separates it from
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Figure 12: Colored plots: Top three particles identified by our procedure. The thick borders
represent the partition, and the color represents the posterior mean of the parameters α and β.
Black and white plots: difference plots showing in gray the areas where the cluster assignments
change between two partitions. Top: Ewens-Pitman prior with η = 5. Bottom: Uniform prior on
SP.
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the neighborhoods immediately to its east and west that have decreasing time trends. In

contrast, the third particle clusters all of these neighborhoods together and estimates a

decreasing time trend in all of them.

Figure 12 also reveals the sensitivity of the posterior over the partitions to the choice of

priors. Specifically, we recover many more clusters when we placed uniform priors on the

partitions than when we placed Ewens-Pitman priors. We see this contrast best in the

recovered time trend partitions γ(β). As we see in the second row of Figure 12, with the

Ewens-Pitman prior, we recover a relatively small number of clusters: one very large cluster

that contains nearly all neighborhoods with an estimated mildly decreasing time trend and

a handful of singleton clusters that display more extreme increasing or decreasing time

trends. In contrast, with the uniform prior (fourth row of Figure 12), we recover many

more clusters. Like with the Ewens-Pitman prior, we still identify some singleton clusters

corresponding to more extreme time trends but also identify many moderately sized clusters

that display a range of time trends, both increasing and decreasing. Interestingly, though

we recover more clusters in the mean level partition γ(α) with a uniform prior, the estimates

of αi arising from both priors show little substantive difference.

While Figure 12 compares the top three identified particles, Figure 13 visualizes the overall

variation in the entire particle set. Moreover while the former depicts both the parameter

estimates in the colored plots and the partition differences in the grayscale plots, the latter

only focuses on representing the partition differences. We first depict the top particle and

represent the cluster borders with thick lines and then we shade each neighborhood that

is assigned to a different cluster in any of the remaining particles γ(`) for ` = 2, . . . , L.

In this way, we may regard the plots in Figure 13 as the superimposition of the greyscale

difference plots computed for each pair (γ(1),γ(`)). The left panel of Figure 13 displays the

difference in the partitions of the average level of crime γ(α) recovered under the Ewens-

Pitman prior. From this plot, we see immediately that all of the recovered mean level

partitions differ in their cluster assignment of only a small number of neighborhoods. The
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Figure 13: Visualization of the overall partition variation in the particle set. The thick black lines
depict the top partition and the shaded areas highlight the neighborhoods that had a different cluster
assignment in at least one of the other nine particles. Left panel: variation in γ(α) when using the
Ewens-Pitman prior. Right panel: variation in γ(β) when using the uniform prior on SP.

right panel displays a similar representation of the recovered time trend partitions γ(β) under

a uniform prior. We see that there is much more variability in the cluster assignment across

the particles, with most of the differences concentrated in South and West Philadelphia. It

is not entirely surprising that there is less variability among the partitions recovered using

a Ewens-Pitman prior than among partitions recovered with a uniform prior. Essentially,

in our local search algorithm, the uniform prior will always favor splitting a large cluster

into smaller clusters, even if the corresponding change in marginal likelihood is small. This

allows the algorithm to discovery very different partitions with similarly large posterior

probabilities. In contrast, the Ewens-Pitman prior tends to favor fine transitions like island

moves over coarser moves that simultaneously re-allocate multiple neighborhoods. As a

result, the discovered partitions tend to be quite similar to one another under the Ewens-

Pitman prior.

Having identified several plausible partitions of the neighborhoods, we now assess the pre-

dictive accuracy of our crime model. In addition to the two prior specifications considered

in Figure 12, we consider two “hybrid” priors: one in which we place a Ewens-Pitman prior
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on γ(α) and a uniform prior on γ(β) and the other in which we place a uniform prior on γ(α)

and a Ewens-Pitman prior on γ(β). Figure S2 in appendix B is an analog of Figure 12 that

depicts the top three particles identified using these two hybrid priors.

Table 2 reports the out-of-sample RMSE for predicting the level of crime in each neigh-

borhood in 2018 for each of the four different partition prior specifications. The column

labelled “Top Particle” reports the RMSE of predictions made using the estimates of α and

β from only the top particle (i.e. the MAP estimate of γ) while the column labelled “BMA”

reports the predictions made by averaging over all of the identified particles with BMA. We

compare the predictive performance of our method under these four prior specifications to

a method that does not impose any shrinkage or clustering and instead makes predictions

based only on the maximum likelihood estimates of α and β.

Table 2: Out-of-sample RMSE using different combinations of priors for the partitions γ(α)

and γ(β). The row labelled MLE corresponds to the method which predicts crime in 2018
using the MLE of α and β computed using data from 2006 – 2018. The next four rows
correspond to the different specifications of the priors on partitions with the prior on γ(α)

listed first.

Top particle BMA

MLE 0.2340 -

EP-EP prior 0.2568 0.2560

Uniform-Uniform prior 0.2327 0.2325

EP-Uniform prior 0.2339 0.2319

Uniform-EP prior 0.2546 0.2539

We see that using a uniform prior on γ(β) yielded better predictive performance than using a

Ewens-Pitman prior. As we see in the second row of Figure 12 and the fourth row of Figure

S2, with a Ewens-Pitman prior, the vast majority of estimated βi’s are negative, indicative

of overall average decreasing time trend across the entire city. With a uniform prior (fourth

row of Figure 12 and second row of Figure S2), we instead recover a more nuanced picture:

while the overall average time trend across the entire city may be negative, there are pockets
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of increasing time trends throughout the city. In a certain sense, because the Ewens-Pitman

prior strongly discourages the formation of a large number of clusters and instead clusters

most of the neighborhoods together, it leads to incorrect estimation of the sign of several

βi’s. Within our simple linear model, incorrect sign estimation can substantially bias future

crime forecasts.

In Table 2, we see that placing a Ewens-Pitman prior on γ(α) and a uniform prior on γ(β)

yielded the best predictive performance. Figure 14 depicts the top particle identified under

this prior specification.

Figure 14: Partitions (thick black lines) and posterior mean coefficients (colors) in the top particle
under the EP prior on γ(α) and uniform prior on γ(β), which is the model with the smallest prediction
error (in the BMA sense).

We recognize many aspects of Philadelphia’s geography directly from the cluster structure

shown in Figure 14. For instance, the clusters labelled 1 and 2 in the figure correspond to

the areas surrounding the Pennypack and Wissahickon rivers, respectively. Further, several

cluster borders coincide exactly with the boundaries of Fairmount Park (indicated by 3a

and 3b in the figure) and the major arterial road Broad Street (labelled 4).

We finally analyze the West Philadelphia and University City region (circled in Figure 14),
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which contains both Drexel University and the University of Pennsylvania. For the most

part, this region is characterized by relatively high levels of crime (darker shades of purple

in the left panel of the figure) with the exception of two neighborhoods that are immediately

adjacent to the universities (lighter green shades). There is substantial heterogeneity in the

estimated time trend within the region as well. Notably, we estimate a decreasing trend

in the neighborhoods in the immediate vicinity of the universities and a slightly increasing

trend further away from the universities. This finding aligns with previous reports of the

positive impact of the University of Pennsylvania’s West Philadelphia Initiatives aimed at

improving the social and economic landscape around the university campus (Ehlenz, 2016).

3.6. Discussion

Accurate estimation of the change in crime over time is a critical first step towards a better

understanding of public safety in large urban environments. An especially important chal-

lenge to such estimation is the potential presence of sharp discontinuities, which may be

smoothed over by naive spatial shrinkage procedures. Focusing on the city of Philadelphia,

we introduced a Bayesian hierarchical model that naturally identifies these discontinuities by

partitioning the city into several clusters of neighborhoods and introduces spatial smooth-

ness within but not between clusters. In particular, we focused on recovering two latent

spatial partitions, one for the mean-level of crime over the twelve year period 2006 – 2017

and one for the time-trend.

Rather than use a computationally prohibitive stochastic search, we instead sought to iden-

tify partitions with highest posterior probability by solving a single optimization problem.

We showed that optimizing the proposed objective function is formally equivalent to find-

ing a particular variational objective and introduced a local search strategy for solving this

problem. While our primary focus has been on crime in the city of Philadelphia, our en-

semble optimization framework is more general and there are a number of areas of future

development, which we discuss below.
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The results of our applied analysis were quite sensitive to the choice of prior placed on the

underlying spatial partition. With a Ewens-Pitman prior, nearly all of the neighborhood

time trends were assigned to a single cluster while with a uniform prior, we obtained a much

richer cluster structure. It would be interesting to construct an objective prior for spatial

partitions along the lines of Casella et al. (2004).

While it may be sufficient to consider a linear temporal model of crime when there are

relatively few time points (Bernardinelli et al., 1995; Anderson et al., 2017), with more

observations per census tract, it is reasonable to consider more flexible models. For instance,

we could model yi,t ∼ N(fi(xi,t), σ
2) and place Gaussian process priors over the fi’s within

each cluster. Such an elaboration retains conditional conjugacy and we can still use our

ensemble optimization strategy to identify clusters with high posterior probability, though

computing the marginal likelihood p(y | γ) is somewhat more involved. It is more difficult

to deploy our ensemble optimization strategy directly when the marginal likelihood p(y | γ)

is not available in closed-form. While it may sometimes be possible to use an EM algorithm

like Ročková (2018), this is not always feasible for more complicated models. One very

natural idea would be to estimate the marginal likelihood with a Laplace approximation.

In many of our empirical examples and especially when we used Ewens-Pitman priors, the

particle set can remain stuck in the vicinity of a dominant mode. When this happen, it

is not immediately obvious whether the posterior truly concentrates around a single dom-

inant mode or if there are other pockets of substantial posterior mass that are far away.

Unfortunately, the entropy term in Equation 3.4 may provide insufficient repulsion between

the particles to probe this latter possibility. Operationally, the entropy term discourages

redundancy in the particle set by penalizing exact equality between particles but does not

penalize placing a particle in the vicinity of another model that is already present in the

particle set. One way around this potential weakness is to augment the optimization objec-

tive in (3.4) with an additional penalty term that directly penalizes the pairwise distance

between particles in the particle set. In doing so, however, we would lose the guarantee of
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optimality afforded by Proposition 1.
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Chapter 4

Prior Choice for Clustering Areal Data

4.1. Introduction

Areal data, a kind of spatial data that are measured at an aggregate level within regions,

are common in many disciplines, from socio-economic census data and health data, which

are aggregated for privacy reasons, to image data, where light and color are collected at

the pixel level. These regions, which partition the space of interest and have well defined

borders, are called areal units.

It is often of interest to find groups of areal units that display homogeneous characteristics,

to summarize the spatial variation and gain insight in underlying patters, or for better

estimation through the use of mixture models. These groups, or clusters, of areal units are

often presumed to be formed by adjacent units, or to be geographically connected, as near

units are expected to have more similar behaviors than distant ones.

A fairly well known application of spatial clustering of areal data is disease mapping. The

number of disease events are aggregated in each geographical region (e.g. counties) for

privacy concerns and the disease risk is estimated in each areas, in order to map patterns

and identify parts of high/low risk. For a review of disease mapping see for example Best

et al. (2005); Lawson (2013). Another interesting and similar application is the study of

crime change over time, as we describe in Chapter 3.

In all of these applications, the interest lies in the detection of clusters of regions that exhibit

markedly different trends, or equivalently, of the underlying partition of areal units. The

Bayesian perspective is especially helpful in this context, because it allows the expression of

uncertainty and of prior information about this latent partition through a prior distribution,

or model.
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Several approaches have been considered in the literature for modeling this partition.

Approaches based on tessellation techniques (Knorr-Held and Raßer, 2000; Denison and

Holmes, 2001; Feng et al., 2016) and on the Potts model (Green and Richardson, 2002;

François et al., 2006; Johnson et al., 2013), as well as other approaches (Anderson et al.,

2017) first choose a fix number of clusters or treat it as a random variable, and conditionally

model the cluster membership of each unit.

In contrast to these approaches, it is possible to consider the latent clustering as an ob-

ject living in the space of partitions. This approach requires the use of distributions over

the space of partitions. A well-known choice is the distribution induced by the Dirichlet

Process (Ferguson, 1973), also known as the Ewens distribution (Ewens, 1972; Pitman,

1996). Among the reasons for its widespread use in the Bayesian Nonparametric commu-

nity, is its mathematical convenience; specifically, under the Ewens prior, the partitions are

exchangeable, i.e. the probability does not depend on the label of the units.

However, spatial data are not exchangeable: as suggested by Tobler’s first law of geography,

“everything is related to everything else, but near things are more related than distant

things”; thus, the probability that two adjacent units belong to the same cluster should be

higher, not the same, as the one for two units that are distant, because a priori we expect

the two near units to be more similar. In other words, a distribution that is invariant

to relabeling of the units ignores the spatial structure. For this precise reason, a prior

distribution that induces exchangeable partitions is not appropriate for clustering areal

data. Instead, several alternatives have been proposed, which generate spatial partitions, in

which adjacent units have a larger probability of being clustered together.

The majority of these approaches start from the Dirichlet Process and the distribution it

induces on partitions, and alter it to account for the spatial information. This can be done

in two ways: the Dirichlet Process can itself be changed, by modifying the stick-breaking

construction (see e.g. Ren et al., 2011; Jo et al., 2017; Hosseinpouri and Khaledi, 2019), or

by directly modifying the distribution induced on partitions (see e.g. Orbanz and Buhmann,
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2008; Dahl et al., 2017; Page et al., 2016). We will focus on the latter approach, as it is

very difficult to study the distribution induced on partitions from the former approach.

Nonetheless, the non-exchangeability of spatial partitions makes them less mathematically

convenient, and thus the properties of many of these distributions have not been studied

thoroughly. However, for a practitioner it is fundamental to know which prior proper-

ties each of them encode and thus which distribution is more appropriate for a particular

application or problem.

One important mathematical property is the property of coherence across sample sizes.

Unfortunately, often distributions over non-exchangeable partitions lack this property. A

notable exception can be found in the PPMx distribution of Müller et al. (2011), which

can be proven to satisfy this property. The PPMx introduces a general framework to adapt

distributions over partitions, in particular Product Partition Models (PPM), in the presence

of covariates, and can be adapted to several settings. In particular, it has has been extended

for spatial partitions, but only in the case of point-referenced data (Page et al., 2016). The

case of areal data has not been considered.

In this work, we have a dual goal: we explore the behavior induced by different choices of

these prior distributions, and we compare their properties; moreover, we extend the work of

Page et al. (2016) to define Spatial Product Partition Models for areal data. We introduce

two distributions for partitions of areal data. We show that the first satisfies the property

of coherence across sample sizes, while the second does not but displays more favorable

empirical properties.

The rest of this work is organized as follows. In section 4.2 we review some of the most

popular distributions over partitions, from exchangeable partitions, to partitions of data

with covariates, to partitions of spatial areal data. In section 4.3 we describe the two new

distributions over partitions, designed to extend the PPMx framework to the case of areal

data. Lastly in sections 4.4 and 4.5 we analyze some prior and posterior properties of the
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distributions considered.

4.2. Background

4.2.1. Priors for exchangeable partitions

The Ewens distribution (Ewens, 1972; Pitman, 1995, 1996), also known as the distribution

over partitions induced by the Dirichlet Process (DP) (Ferguson, 1973), is defined by

Pr(ρ = {S1, . . . , Sk}) = p(n1, . . . , nk) =
αk
∏k
j=1(nj − 1)!

α(α+ 1) . . . (α+ n− 1)
(4.1)

where ρ represents a partition of n elements, Sj represents one of its part, or cluster,

and nj the cardinality of Sj , nj = |Sj |. This formula shows that under this distribution

the probability of a partition depends only on the total number of elements n, on the

number of clusters k and their sizes nj . As a consequence, the partitions generated by the

Ewens distribution are exchangeable and the formula 4.1 is called exchangeable partition

probability function (EPPF) (Pitman et al., 2002). The distribution additionally depends

on the value of the parameter α, which influences the number of clusters generated; as

n→ +∞, the number of clusters grows as α log(n), where n is the number of elements that

are being partitioned.

The Ewens distribution is very popular for its mathematically simplicity; however, this log-

arithmic growing rate often does not match the behavior of real world phenomena. We can

consider an extension of the Ewens distribution, the Ewens-Pitman1 distribution (Pitman

and Yor, 1997), which is also known as the distribution induced by the Pitman-Yor Process.

The Ewens-Pitman distribution over partitions is defined by

Pr(ρ = {S1, . . . , Sk}) =

∏k−1
j=1(α+ jσ)

(α+ 1)n−1

k∏
j=1

(1− σ)nj−1.

1There is some ambiguity in the literature about the names for these distributions. Casella et al. (2014)
refers to the distribution induced by the Dirichlet Process as Ewens-Pitman distribution. Here we follow
what seems to be the most common choice, following also the work of Dahl et al. (2017).
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where (x)m = x(x+1) . . . (x+m−1) = Γ(x+m)/Γ(x). The additional parameter σ ∈ [0, 1)

is affecting the asymptotic number of clusters: it now grows as nσ. This power law behavior

is considered more appropriate for many real world applications. Similarly to the Ewens

distribution, the Ewens-Pitman probability function only depends on the clusters sizes and

it induces exchangeable partitions.

Both the Ewens and the Ewens-Pitman prior belong to the family of Product Partition Mod-

els (PPM), introduced by Hartigan (1990); Barry and Hartigan (1992). These distributions

are characterized by a probability function that factorizes over the clusters:

Pr(ρ = {S1, . . . , Sk}) =
1

K

k∏
j=1

c(Sj),

where c(S) is a cohesion for each cluster S ∈ ρ and K is the normalizing constant

4.2.2. Priors for partitions dependent on covariates

Exchangeable partitions are mathematically convenient, but cannot be used to describe

certain situations. For example, in the presence of covariates it is not advisable to assume

the probability to be invariant to permutations of the units indices. In similar works, Müller

et al. (2011) and Park and Dunson (2010), extend the Product Partition Model (PPM) to

allow for predictor-dependent partitions, and they introduce analogous models: the PPM

with covariates (PPMx) and the generalized product partition model (GPPM).

They consider a setting in which each subject’s response yi is observed together with pre-

dictors xi; their objective is to model the responses given a partition of the elements and

to provide a prior distribution for the partition which accounts for the covariates. Let

xn = (x1, . . . , xn) and yn = (y1, . . . , yn) denote the predictors and responses for all the

units under consideration; moreover let xS = (xi : i ∈ S) and yS = (yi : i ∈ S) be the

collection of predictors and responses for the units in cluster S. The model for the responses

is a mixture model; given a partition ρ of the units, it treats the data in different clusters
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as conditionally independent, i.e. the likelihood factorizes over the clusters:

p(yn|ρ = {S1, . . . , Sk},θ) =
k∏
j=1

p(ySj |θj).

The prior for the partitions is constructed as a product over the clusters of a term that

operates on the cluster itself c(Sj) and of a predictor-dependent cohesion function g(xSj )

that operates on the covariates of the units in that cluster:

p(ρ = {S1, . . . , Sk}|xn) ∝
k∏
j=1

c(Sj)g(xSj ).

While the term c(·) was referred to as “cohesion” under the Product Partition Model,

to avoid any ambiguity from now on we will use the term cohesion only to refer to the

predictor-dependent cohesion function g. The first term c(·) can be borrowed from the

most popular PPM’s, such as the Ewens or the Ewens-Pitman distribution. There are

instead several ways of constructing the cohesion functions g(·) for the covariates. The

definition proposed by Müller et al. (2011) and Park and Dunson (2010) uses an auxiliary

model for the covariates given their cluster membership: assume that for each cluster the

covariates are exchangeable and generated from the auxiliary model q(·|ξ); then set g(xSj )

as the marginal likelihood for the covariates:

g(xSj ) =

∫ ∏
i∈Sj

q(xi|ξj)q(ξj)dξj . (4.2)

By assuming that in the auxiliary model the covariates are exchangeable within each clus-

ter, the prior distribution will favor partitions whose clusters have similar values of the

covariates.

Note that the distribution for partitions defined by the PPMx and GPPM could be inter-

preted as an application of Bayes’ formula:

p(ρ|xn) ∝ p(xn|ρ)p(ρ)
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where p(ρ) ∝
∏k
j=1 c(Sj) is given by a distribution for exchangeable partitions, such as the

Ewens distribution, and p(xn|ρ) =
∏k
j=1

∫ ∏
i∈Sj q(xi|ξj)q(ξj)dξj is the auxiliary mixture

model for the covariates. Considering the posterior distribution p(ρ|xn) of this auxiliary

model, leads to the construction of a distribution for non-exchangeable partitions.

One of the important properties of the PPMx is its coherence across sample sizes, which

relates the probabilities of the partition over n elements ρn and the partition over n + 1

elements ρn+1:

p(ρn|xn) =
∑
zn+1

∫
p(ρn+1|xn+1)q(xn+1|xn)dxn+1 (4.3)

where q(xn+1|xn) ∝ g(xn+1)/g(xn).

The generality of this formulation makes this model applicable in many applications. In fact,

the PPMx prior has been adapted to many different kinds of covariates, and in particular

to spatial data: Page et al. (2016) specialize this model to the case of point-referenced data,

i.e. data representing a point that can vary continuously in space, such as GPS locations.

However, they do not consider the case of areal data. In the next section we describe the

existing approaches to model partitions of spatial data, both point-referenced and areal.

4.2.3. Prior for partitions of spatial data

Spatial data is a particular case that falls into the framework of Müller et al. (2011) and Park

and Dunson (2010), where the covariate x represent the spatial location of the observations.

Because of the ubiquity of such data, specific models have been constructed to deal with

data.

For example, Page et al. (2016) adapt the PPMx framework to point-referenced spatial

data, i.e. the covariates x represent the GPS location of the observations. They construct

the auxiliary model by assuming a Normal-Inverse-Gamma prior for the location xi. Thus,

if ξj = (µj ,Σj), then q(xi|ξj) = N(µj ,Σj) and q(ξj) = NIG(µj ,Σj).

While this auxiliary model could artificially be used on areal data by considering the coor-
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dinates of areal units’ centroids, it is not appropriate for this kind of data. As an example,

consider neighborhoods in a city, which form a non-regular graph and where some neigh-

borhoods can be much larger than the others; specifically, if one large neighborhood is

surrounded by many small neighborhoods, the distance between the centroids of the large

and a small neighborhood would be much larger than the distance between the centroids of

two small adjacent neighborhoods.

It is thus important to consider auxiliary models that specifically address the case of areal

data; however, Page et al. (2016) do not propose auxiliary models for this case. Instead,

they provide alternative distributions, some of these obtained by combining a cohesion

function with a standard distribution. However, these alternative distribution don’t have

the property of coherence of the PPMx. We now describe a notable distribution, the Ewens

or DP distribution restricted on connected partitions, which was also described in Page

et al. (2016). Consider the definition of connected cluster and of connected partition, which

we adapt from Page et al. (2016).

Definition 1 (Connected cluster). Let d(·, ·) be the distance between areal units given by

the length of the shortest path connecting them. Consider cluster Sh ∈ ρ. We say that

cluster Sh is spatially connected if there does not exist i ∈ Sh and i′ /∈ Sh such that for all

j ∈ Sh, d(i, i′) < d(i, j).

Note that if a cluster is not connected, then there exist some i, i′ such that d(i, j) > d(i, i′) ≥

1, for all j ∈ Sh. In other words, if a cluster is not connected under this metric, there must

exist i ∈ Sh such that d(i, j) > 1 for all j ∈ Sh, i.e. the shortest path between i and all

the other elements of the clusters has at least length 2, meaning that there is no path fully

contained in the cluster connecting its elements. Moreover, this definition depends on both

the clusters and the information about the adjacency structure, which is encoded in the

adjacency matrix W .

Definition 2 (Connected partition). A partition is said spatially connected if all of its

clusters are spatially connected.
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With these definitions, we can consider a truncation function t(ρ,W ) ∝ 1 if ρ is connected

and 0 otherwise, and restrict any distribution over partitions to the subset of spatially

connected partitions. In particular, we can consider the Ewens or DP distribution and only

assign positive probability to connected partitions:

Pr(ρ = {S1, . . . , Sk}|W ) ∝ pDP (ρ)t(ρ,W ) ∝


αk
∏k
j=1(nj − 1)! if ρ connected

0 otherwise.

We will refer to this distribution as Connected-DP. However, as citepage2016spatial point

out, this definition is “intuitively appealing” but “challenging to implement from a compu-

tational stand point”.

Another distribution based on a cohesion function is the Markov Random Field DP (Orbanz

and Buhmann, 2008). Under this distribution, the cohesion function is constructed to satisfy

the Markov property, using Hammersley-Clifford theorem. Specifically:

p(ρ = {S1, . . . , Sk}|W ) ∝
k∏

h=1

c(Sh)e
−λ

∑
i,j∈Sh

wij . (4.4)

If we derive the conditional distribution for the cluster membership zi, we see that the

cohesion term only depends on the cluster membership of its neighbors, i.e. the units j for

which wij = 1: p(zi|z−i,W ) ∝ c(zi|z−i) exp(−λ
∑

j wijδzi=zj ).

All of these distributions, as the majority of the distributions for non-exchangeable par-

titions, are unfortunately specified up to a normalizing constant, which is analytically in-

tractable and cannot be computed. A different approach instead is taken by Dahl et al.

(2017), who specifies the distribution as the product of conditional probabilities and thus

can compute it exactly. However, since the distribution induced is non-exchangeable, the

probability depends on the order of the units. In other words, it depends on a permutation

σ = (σ1, . . . , σn) of the units {1, . . . , n}. Given a pairwise similarity function, λ(i, j), that
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measures the vicinity of two units, and given a permutation σ, Dahl et al. (2017) define2

the Ewens-Pitman Attraction distribution (EPA) as

p(ρ = {S1, . . . , Sk}|λ,σ) =
n∏
i=1

p(zσi |zσ1 , . . . zσi−1 , λ,σ)

where

p(zσi = h|zσ1 , . . . zσi−1 , λ,σ) =


i−1

α+i−1

∑
j<i λ(σi,σj)1(zσj=h)∑

j<i λ(σi,σj)
if h ∈ {zσ1 , . . . , zσi−1}

α
α+i−1 if h new cluster.

(4.5)

This clever construction preserves the asymptotic distribution of the total number of clus-

ters. In fact, the probability of creating a new cluster given the assignment of the first i− 1

units is the same as the one induced by the Ewens distribution: α/(α+ i− 1). At the same

time, the probability of joining a previous cluster is weighted by the similarity of the units

belonging to it. In the simple case that λ is constant, the EPA reduces to the conditional

specification of the Ewens distribution: p(zσi = h|zσ1 , . . . zσi−1 ,σ) = ni/(α + i − 1). The

EPA distribution can easily be used in areal data settings, where the similarity function can

be constructed as a non-increasing function of the distance d, for example λ(d) = exp(−τd).

In the case of areal data, we can consider the distance defined by length of the shortest

path connecting two areal units.

To avoid the definition of the distribution depend on the permutation of the units, σ is

assumed to be uniformly distributed and the marginal distribution on partitions can be

computed as

p(ρ = {S1, . . . , Sk}|λ) ∝
∑
σ

p(ρ = {S1, . . . , Sk}|λ,σ).

Thus, when the number of units is not small, the functional form cannot be computed, as

it depends on an intractable sum.

2The definition given in Dahl et al. (2017) is more general and includes an additional parameter δ, equiv-
alent to the additional parameter present in the Ewens-Pitman distribution; here we report the particular
case where δ = 0.

80



4.3. Our proposal: priors for partitions of areal data

Differently from point-referenced data, which are provided with GPS locations or continuous

coordinate on a space, areal data consists of data measured or aggregated within a discrete

set of regions, called areal units. Their spatial information is described by their adjacency

relationship, which defines the neighborhood structure. This information is often encoded

in the adjacency matrix W , whose entries wij are equal to 1 when units i and j share a

border, and 0 otherwise.

Because of the adjacency structure, areal data can be viewed as a graph: each areal unit

can be interpreted as a node, and nodes corresponding to neighboring units can be thought

as connected by an edge.

Moreover, information concerns pairs of units, since it is encoded in the pairwise adjacency

relationship. As a consequence, it is impossible to create a model that factorizes over

clusters, unless the pairwise information between different clusters is ignored or counted

twice. Since both options do not seem advisable, we argue that the Product Partition

Model assumption is not appropriate for partitions of areal data.

Instead, we suggest to consider a cohesion function that does not factorize over the clusters

g(xn):

p({S1, . . . , Sk}|xn) ∝ g(xn)
k∏
j=1

c(Sk).

This distribution is consistent with the idea of using Bayes rule to define the prior for

partitions, p(ρ|xn) ∝ p(xn|ρ)p(ρ), with the difference that in this case the auxiliary model

for the covariates p(xn|ρ) does not factorize over the clusters.

To construct g we first need to decide what is the covariate information xn that should be

used to construct the distribution; two options are described in the following paragraphs:

we could use the adjacency matrix W , or we could use an appropriate summary statistic.
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SBM-PPMx Given a collection of n areal units, we want to model their adjacency struc-

ture by assigning a probability distribution to the entries of W , which represent the relation-

ship of being adjacent to another unit. In other words, we want to construct an auxiliary

model for xn = W . Since the adjacency matrix W is symmetric, only half of the entries

need to be modeled: {wij : i < j}. With an abuse of notation this upper triangular matrix

will be denoted W . Moreover, to emphasize the dependence on the sample size, we will

sometimes use the notation Wn.

We will borrow the terminology from graph theory, and say that wij = 1 signifies the

presence of an edge between unit i and unit j. To model the distribution of W , we can

assign an ordering to the units and work iteratively: consider the edges between the“last”

unit n and the previous units 1, 2, . . . , n−1: wn = {wi,n : i < n}. If we denote with Wn the

adjacency matrix of all the n units, and with Wn−1 the matrix for the first n− 1 units, we

can define p(Wn|ρ, θ) = p(wn|ρ,Wn−1, θ)p(Wn−1|ρ, θ). To make this more intuitive we can

think of describing the adjacency structure of the neighborhoods of a city by starting from

the center and adding one region at a time, working in circles moving further away from the

center. Every time we consider an additional unit, we examine the adjacency relationship

to the previous units.

Let us now define the distribution of p(wn|ρ,Wn−1, θ). Remember that win = 1 if units

i and n share a border and 0 otherwise; moreover, let ρ be the partition of the units

and let z1, . . . , zn represent the cluster memberships. To define our model, we borrow the

idea underlying the Stochastic block model (SBM) (Holland et al., 1983): nodes in the

same group are more connected than nodes in different groups. Thus, conditional on the

partition of the units, we can expect a larger number of edges between units in the same

cluster, and a smaller number of connections between different clusters. Thus we can divide

the units 1, 2, . . . , n− 1 into two groups: the units in the same cluster as unit n and those

in different clusters; let sn be the cardinality of the first group, sn = #{i : zi = zn}. As in

the SBM, we assume the elements of wn to be independent and we model each of them as
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Bernoulli random variables with probability ξ1 if they belong in the same cluster as n, and

with probability ξ0 if they are in a different cluster. The parameter of this auxiliary model

then are θ = (ξ1, ξ0). Thus,

p({win : zi = zn}|ρ,Wn−1, θ) =
∏

i:zi=zn

ξwin1 (1− ξ1)1−win

p({win : zi 6= zn}|ρ,Wn−1, θ) =
∏

i:zi 6=zn

ξwin0 (1− ξ0)1−win

and letting vn =
∑

zi=zn
win and dn =

∑
iwin be respectively the within-cluster neighbors

and the total number of neighbors (the degree) of n,

p(wn|ρ,Wn−1, θ) = ξvn1 (1− ξ1)sn−vn · ξen−vn0 (1− ξ)n−1−sn−(en−vn).

If we complete this model iteratively, we find that the entries of Wn can be divided in

two groups: the within cluster connections {wij : zi = zj , i < j}, and the between clusters

connections {wij : zi 6= zj , i < j}. The distribution of the whole matrix is then

p(W |ρn, θ) =
∏

i<j:zi=zj

ξ
wij
1 (1− ξ1)1−wij

∏
i<j:zi 6=zj

ξ
wij
0 (1− ξ0)1−wij =

= ξv
n

1 (1− ξ1)s
n−vn · ξen−vn0 (1− ξ)n(n−1)/2−sn−(en−vn),

where sn =
∑

i≤n sn, vn =
∑

i≤n vn and en =
∑

i≤n en. Note that despite we describe the

construction in an iterative way, the auxiliary does not depend on the order of the units.

To complete our auxiliary model, we specify the prior for θ: p(ξ1) = Beta(a, b) and p(ξ1) =

Beta(c, d). In Appendix C.1 we give a heuristic to specify the hyper-parameters so that

ξ0 < ξ1.

Finally, we can derive the functional form of the cohesion function under the SBM auxiliary
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model:

g(xn) = g(Wn) =
B(a+ vn, b+ sn)

B(a, b)

B(c+ en − vn, d+ n(n− 1)/2− sn)

B(c, d)
. (4.6)

Since we are able to consider a variable for each unit, i.e. wn = {wi,n : i < n}, the coherence

across sample sizes described in equation (4.3) still sholds.

Proposition 1. The distribution over partitions induced by the SBM-PPMx auxiliary model

is coherent across sample sizes, in the sense of

p(ρn|Wn) =
∑
zn+1

∫
p(ρn+1|Wn+1)q(wn+1|Wn)dwn+1

where q(wn+1|Wn) ∝ g(Wn+1)/g(Wn).

Areal-PPMx The SBM auxiliary model introduced above treats the entries of the matrix

as independent; this assumption might be inappropriate and lead to undesirable properties

in the cohesion function induced. A simple way to introduce dependence is to model the

data through a summary statistic; a natural choice in this setting is given by the number

of within cluster connections vn = 1
2

∑
ij wij1{zi = zj}. Since vn is bounded by the total

number of edges en = 1
2

∑
ij wij , we can easily model vn as a Binomial distribution with

probability θ:

p(vn|en, ρ, θ) = Binom(en, θ).

It would be tempting to consider wij1{zi = zj} as individual Bernoulli variables; however,

this would require conditioning on the indices for which wij = 1, leaving no other source

of randomness (as we already condition on the partition ρ). Instead, consider the nth

areal unit, with dn connections to other units (dn is also the degree of unit n), indexed

by i1, i2, . . . , idn . Each of these indices can be assigned to a unit in the same cluster as

n, and thus represent a within-cluster connection, or to one in a different cluster. Each

index ik can thus identify the Bernoulli random variable Y n
k which is used to define w:

84



let Y n
k = 1{zik = zn}. If we assume that Y n

1 , . . . , Y
n
dn

are independent and identically

distributed Y n
k ∼ Bern(θ), then vn =

∑dn
k=1 Y

n
k is the number of within-cluster connections

of unit n. Moreover, let vn =
∑

i≤n vi be the number of within-cluster connections generated

by the first n areal units, then vn = vn−1+vn. To complete the auxiliary model specification

we assume θ ∼Beta(a, c); see Appendix C.1 for a heuristic to specify the hyper-parameters.

Then

g(xn) = q(vn) =

(
vn

en

)
B(a+ vn, c+ en − vn)

B(a, c)
. (4.7)

Note: the assumption of independence is only approximate, because the indices are not

sampled with replacement; however for simplicity we consider this approximate distribution.

One of the important properties of the PPMx is the coherence across sample size; Müller

et al. (2011) show that this property holds when we condition on the full data xn. When

instead of conditioning on the full data we condition on a summary statistics, the property

does not hold exactly in the same way:

p(ρn|vn) =
∑
zn+1

∫
p(ρn, zn+1, vn+1|vn)dvn+1 =

=
∑
zn+1

∫
p(ρn+1|vn, vn+1)p(vn+1|vn)dvn+1

The difference that we notice is that in this formula we have p(ρn+1|vn, vn+1) instead of

p(ρn+1|vn+1), which would be more desirable.

A possible way to fix this would be to consider the sequence of (vi) for i = 1, . . . , n:

p(ρn|v1, v2, . . . , vn), where
∑n

i=1 vi = vn. This would imply conditioning on the sequence

of summary statistics, which represents more information and does not have any apparent

practical benefits or intuition; moreover, conditioning on the sequence would make the

cohesion depend on the order the areal units are observed, which is not desirable.
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4.4. Comparison of prior properties

In this section we outline and compare some properties of the distributions for partitions of

areal data, described in the previous sections: (1) the Dirichlet Process, (2) the Dirichlet

Process restricted on connected partitions (connected-DP), (3) the EPA (Dahl et al., 2017),

(4) the DP-MRF (Orbanz and Buhmann, 2008), (5) the SBM-PPMx and (6) the Areal-

PPMx, both described in Section 4.3. We consider their prior properties, i.e. the properties

induced on the partitions when these distributions are used as prior distribution, without

data being observed. Knowing the prior properties is important, as the choice of the prior

distribution often influences the posterior inferences. Moreover practitioners should be

aware of these properties, as they might want to choose a distribution that describes their

prior beliefs.

The properties we consider can be divided in two categories: the ones relevant for any

distribution over partitions and the ones specifically relevant for areal data. In the first

category we consider (a.) the distribution of the number of clusters, (b.) the distribution

of the size of the largest cluster and (c.) the distribution of the number of singletons.

In the second category we consider (d.) the distribution of the number of within-cluster

connections and (e.) the proportion of connected partitions.

For simplicity we consider areal data arranged in regular square grids. Since the number

of partitions grows more than exponentially, it is not feasible to exactly calculate these

properties for grids larger than the 3 by 3 grid. Thus we report the exact properties for

such graph, and we estimate them for larger graphs, by sampling partitions from these prior

distributions. While it is easy to sample from the Dirichlet Process and the EPA priors, it

is impossible to directly sample from the other prior distributions that involve a cohesion

function (the connected-DP, the DP-MRF, the PPMx-SBM and the Areal-PPMx). For

such distributions we will use importance sampling: we draw partitions from the DP or

EPA distribution and re-weight the samples accordingly.
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Figure 15: Distribution of the properties (a)-(e) on a 3 by 3 grid.

In figures 15 we report the properties (a)-(e) computed exactly on the 3 by 3 grid graph.

We notice how the EPA distribution has behaviors extremely similar to the DP, with the

exception of (d) the number of within-cluster edges and (e) the proportion of connected

partitions, where we see that it favors the spatial clusters compared to the DP; however,

compared to the other distributions, the EPA is the most similar to the DP in the number of

within-cluster connections (d), even though it seems to induce a moderately large proportion

of connected partitions (e). On the contrary, we notice that the DP-MRF is the distribution

that mostly differs from the DP: the MRF cohesion function puts so much weight on the

partition with one cluster that all the properties are completely distorted in favor of such

partition. The Connected-DP prior displays properties that are similar to the DP but with

a reasonable preference for spatial partitions. However, this distribution does not allow

for partitions with a disconnected cluster, which is quite a restrictive assumption. The

Areal-PPMx seems to display properties similar to the Connected-DP, with the exception

of the proportion of connected partitions (e), where it allows a positive proportion of non-

connected partitions, even though much smaller than the DP. The SBM-PPMx displays

properties apparently similar to the DP, while giving higher weight to connected partitions
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Figure 16: Distribution of the number of within-clusters connections for different distribu-
tions, computed approximately using importance sampling on a 5 by 5 grid.

or partitions with a larger number of within-cluster connections.

In the section C.2 of the appendix, we report the same properties computed approximately

on a 5 by 5 grid graph, using importance sampling. Here, we simply emphasize some

important points.

First, there is a strong difference in the distribution of the number of within-cluster con-

nections between the EPA and the Areal-PPMx, and it is even stronger than in the 3 by 3

grid. In figure 16 we report a zoomed-in plot, where it is possible to see more clearly that

compared to the DP, the EPA gives some more weight to partitions with a large number

of within-cluster connections; however such weight is not very strong compared to other

distributions, as the Areal-PPMx.

One might wonder whether it’s possible to increase the strength of the pairwise similarity

function to induce a stronger spatial effect. To that purpose, we examine the distribution of

within-cluster connections for the exponential similarity function λ(i, j) = exp(−τ · d(i, j)),

for 5 different values of τ : τ = 0, which corresponds to the DP, τ = 1, 3, 10 and 50. In

figure 17 we can see that while the ”spatial effect” increases from the DP to larger values

of λ, such as 3 and 10, we also notice that for very large values of λ, such as 50, the effect

stops increasing. As for the Areal-PPMx, it is instead possible to tune the values of the

hyper-parameters to make the spatial effect much stronger.
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Figure 17: Distribution of the number of within-clusters connections for the DP, the EPA
with different τ values and the Areal-PPMx, computed approximately using importance
sampling on a 5 by 5 grid.

A second notable point is that the SBM-PPMx displays properties that differ from the

DP in unexpected ways. In particular, the distribution of the number of within-cluster

connections (d) is quite spiky compared to EPA and Areal-PPMx distributions, which are

somewhat flatter. Instead, if we compare it to the Connected-DP or the DP-MRF, which

also have an important mode, we notice that the most frequent number of within-cluster

connections is much smaller than the total number of connections, which is the mode for the

Connected-DP or the DP-MRF. We believe this is due to the difficulty in tuning the hyper-

parameters of the SBM-PPMx (a heuristic for specifying them is described in section C.1

of the appendix). In particular, the effect is stronger for larger graphs, such as the 5 by 5

grid. In particular, it is not trivial to find a balance between incorporating sufficient prior

information to induce the desired spatial behavior and distorting the distribution by giving

too much weight to a specific type of configuration. In the simpler auxiliary model of the

Areal-PPMx prior this problem fortunately did not appear and the behavior seems to be

consistent with the analysis on the smaller graph.
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A B C

A∗ B∗ C∗

Figure 18: Partition configurations considered in the analysis of posterior properties. Con-
figurations denoted with a star are similar to the corresponding configuration without a
star, with the addition of some singletons.

4.5. Comparison of posterior properties

When the prior distribution is combined with the data model, and the posterior distribution

is considered, it is possible to make inferences. In this section we analyze the posterior

properties and behaviors for the distributions described in the previous sections, except for

the SBM-PPMx distribution.

For this purpose we consider different partition configurations, reported in figure 18, on a

10 by 10 grid graph. We analyze three types of configurations with different numbers and

shape of clusters: configurations A, B and C; for each type we also consider a version that

also displays some singletons: configurations A∗, B∗ and C∗. Considering partitions with

singletons is important because they have fewer within-cluster connections, as the singleton

cluster is formed by one unique element, while still agreeing with the concept of being

“spatial”. Moreover, as many distributions for spatial partitions prefer large numbers of

within-cluster connections, partitions with singletons risk to be penalized.

Each of these configurations was used to generate data with the following model: cluster-

specific means are fixed chosen so that the different clusters are distinguishable; within each
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cluster, unit-specific values are sampled using a conditionally auto-regressive (CAR) model

(using the formulation from Leroux et al. (2000)) centered around the cluster-specific mean.

In this simulated analysis, 300 datasets are sampled for each partition configuration.

We analyze the posterior distribution induced by each of the priors considered. We use the

Particle Optimization algorithm to find the three partitions with largest posterior proba-

bility; we then consider the proportion of times the partition used to generate the data is

found among the top three partitions.

Configurations
Priors A A∗ B B∗ C C∗

DP 0.82 0.71 0.47 0.37 0.99 0.75
Connected-DP 1 0.64 0.66 0.28 1 0.31

EPA 0.87 0.52 0.09 0.09 0.92 0.61
DP-MRF 1 0.83 0.66 0.34 1 0.55

ArealPPMx 0.91 0.86 0.52 0.48 1 0.75

Table 3: Proportion of times the original partition was recovered among the top three
partitions using the Particle Optimization algorithm.

Table 3 reports the results for the configurations and for the different distributions. We note

how the DP is not bad at recovering the original partitions, and even though it does not give

higher probability to spatial partitions it can recover them if the data displays that behavior.

The Connected-DP is better than the DP in all the configurations without singletons, but

performs worse in configurations with them. The EPA performs particularly poorly in

many of these configurations. In particular we found that it would recover finer partitions,

picking up subtle data behaviors, similar to what a uniform distribution over partitions

would find. For this reason, we believe the EPA can be considered as a non-informative or

vague distribution, as in the posterior, the data likelihood would have much more weight

than the prior. The DP-MRF seems to perform well in some settings and worse in others.

The Areal-PPMx seemed to be particularly sensitive in recovering singletons, while also

performing well in the other configurations.
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4.6. Discussion

Different priors for distributions of areal data have been proposed, but the properties in-

duced are known only for few of them. Under the Ewens-Pitman Attraction, the asymptotic

number of clusters grows as for the Ewens-Pitman distribution. The Product Partition

Model dependent on covariates (PPMx) is coherent across sample sizes; however, though

it has been adapted to spatial point-referenced data, it has not been extended to the case

of areal data. The properties of other distributions, like the DP restricted on connected

partitions and the Markov Random Field DP, have not been explored.

In this work, we compared the prior and posterior properties of several distributions that

can be used to model partitions of areal data. Moreover, we introduced two auxiliary models

that extend the PPMx to partitions of areal data. The first, the SBM-PPMx, models the

adjacency structure as a network and is based on the Stochastic Block Model (SBM). The

second, the Areal-PPMx, models a summary statistic of the adjacency information, the

number of within cluster connections, using a Beta-Binomial distribution.

Most of the distributions we consider have been constructed by modifying the Dirichlet

Process distribution to induce spatial behaviors. However, in our analyses of prior proper-

ties we showed that for some of them, such as the MRF-DP, the properties displayed are

strongly distorted from the properties of the DP. Others, such as the EPA, display very

similar properties to the DP, but are not able to incorporate arbitrarily high level of spa-

tial dependence. The connected-DP displays good spatial properties, but imposes a hard

constraint and gives zero probability to partitions with non connected clusters. The prop-

erties for the SBM-PPMx strongly depend on the hyper-parameter specification, which can

be complicated, especially for larger number of units. The Areal-PPMx instead displays

good properties, similar to the EPA, with adaptable level of spatial dependence; the hyper-

parameter specification for this model seemed to not influence the prior as much. However,

the Areal-PPMx does not have the property of coherence across sample sizes, despite being
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constructed with an auxiliary model, because it depends on a summary statistic of the data,

and not individual data points.

In a similar way, these same distributions can be adapted to modify the Ewens-Pitman

distribution, for which the number of clusters is characterized by a power-law behavior,

rather than the logarithmic growth of the Ewens distribution. In future work, additional

analyses can be performed, to study their prior properties under this new setting and to

test whether the power-law behavior is preserved.

One of the distributions proposed in this work, the SBM-PPMx, suffers from bad empirical

properties and sensitivity to hyper-parameters choice. Several reasons can possibly explain

this behavior. First, the likelihood chosen for the auxiliary model is designed for graphs,

and while areal data can be interpreted as a graph, they represent a particular kind of

graphs: planar graphs, i.e. graphs in which edges do not intersect. It is likely that a model

explicitly constructed for planar graphs would have a better performance than the Stochastic

Block Model. And second, the SBM is a complex model that depends on several hyper-

parameters, and its success depends on the correct specification of these values, which are

usually estimated, not specified a priori. Since the auxiliary model is used to specify a prior

distribution, it needs to be a simple model, with a small number of hyper-parameters that

can be simply be specified without negatively affecting the behavior of the prior distribution.

The other distribution we proposed, the Areal-PPMx, achieves this goal by modeling a

summary statistic of the data, which requires a simpler auxiliary model, with easier tuning

of hyper-parameters. However, conditioning on a summary statistic changes the structure

of the PPMx framework, and the property of coherence across sample sizes is lost. Future

work should focus on constructing a different auxiliary model that combines the positive

aspects of the SBM-PPMx and Areal-PPMx. To ensure the property of coherence across

sample sizes guaranteed by the PPMx framework, it should model unit-specific information,

instead of a summary statistic of all the units; to provide good empirical behavior, it would

need to be simple and not sensitive to hyper-parameter choice.
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Chapter 5

Clustering Data at Multiple Resolutions

5.1. Introduction

Clustering is a popular unsupervised method that has been studied widely in statistics and

machine learning. In particular, when data are divided into a large number of categories, it

can be beneficial to cluster together those displaying similar observations. In fact, clustering

not only improves interpretability of the categories that are grouped together, but it also re-

duces the dimensionality of the problem. Categories are often organized in a hierarchy, with

coarser and finer classes. Examples range from image recognition, such as an image being

classified as a “fruit” or an“apple,” to diagnosis codes, such as patients being admitted to

a hospital for a “lung problem” or an “infection by pencillin-resistant Strep. pneumoniae,”

to topic modeling, such as an article talking about “sport” or “football.” This hierarchical

structure has generated a great deal of interest in different disciplines, including in settings

different from clustering (see for example Yan et al. (2015); Singh et al. (2014); Blei et al.

(2010)).

A notable example of hierarchically structured categories is represented by geo-referenced

data that are aggregated within regions. These aggregated observations are called areal

data and the corresponding regions are areal units. Often multiple levels of granularity

exist, from fine resolutions such as city neighborhoods, to coarser ones such as counties or

states. Because each fine unit is contained in a coarse one, a hierarchy is induced on the

regions and as a consequence on the areal data collected at different resolutions. In this

way, each level of the hierarchy corresponds to a granularity layer.

In previous research, many studies have focused on clustering areal data, especially in the

domain of disease mapping (see e.g. Knorr-Held and Raßer, 2000; Feng et al., 2016; Denison
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and Holmes, 2001; Anderson et al., 2017), but also in the context of crime modeling (Balocchi

et al., 2019). Clustering allows the creation of more interpretable maps, with areal units

being grouped together when they display similar behaviors in the phenomena of interest.

It also aids with dimensionality reduction to prevent over-parametrization and with flexible

sharing of information between regions to improve parameter estimation. The majority

of such analyses fix one layer of resolution and only perform the analysis at the chosen

granularity. Often the highest possible resolution is chosen to better capture local patterns,

even though it is more computationally intensive than lower resolutions.

However, in complex environments, such as cities, the spatial variation of the data can arise

at different resolutions in different regions. It is known in fact that crime rates are higher in

central than suburban areas (Zenou, 2003) and that the majority of the spatial variability

happens at a micro level (Schnell et al., 2017; Steenbeek and Weisburd, 2016). It is unclear

whether the spatial variability can be considered constant throughout the city, or whether

there exists differences between central and suburban areas. For example, it is possible for

the spatial distribution of crime in a city to be more uniform in a residential neighborhood

compared to downtown areas, in which higher heterogeneity of the urban environment could

be expected to cause more variation in crime behaviors. Standard clustering methods that

consider a single granularity level might not be able to capture those differences. Therefore,

instead of reducing the analysis to a specific level, it can be beneficial to simultaneously

consider multiple resolutions.

In this work we focus on clustering crime behaviors at multiple resolutions in the City

of Philadelphia. By finding clusters of neighborhoods with similar crime levels, we can

flexibly model crime behaviors and simultaneously reduce the dimensionality and produce

interpretable maps. Moreover, by modeling crime aggregated at multiple resolutions, we can

assess whether one level is suitable to explain the variation of crime, or whether distinct

levels are more appropriate to describe that variation in different parts of the city. We

consider two different subdivisions of the city. We first aggregate crime at the Police Division
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and Police Service Area resolutions. We then consider the census tract and block group

resolutions for a subset of the city corresponding to the area of West Philadelphia.

When the number of clusters is unknown a priori, Bayesian nonparametric models are

convenient choices as they can specify a prior distribution over the space of partitions for

which the number of clusters does not need to be fixed. While the Dirichlet Process is a

popular model for clustering in the Bayesian nonparametric framework, it can only be used

to cluster data within one level of resolution. For multi-resolution clustering, the nested

Dirichlet Process (Rodŕıguez et al., 2008) is applicable because it considers grouped data

and partitions both the observations and the groups themselves. Thus, if used to cluster

crime in Philadelphia, it could simultaneously find partitions of the census tracts and of the

PSAs, if the former are regarded as observation units and the latter as groups.

In the partitions generated by the nested Dirichlet process however, clusters at finer levels

are forced to be nested within the clusters at coarser levels, as shown in Camerlenghi et al.

(2018). This characteristic is quite restrictive in our modeling, as distinct behaviors can be

found at the intersection of coarser level units. To allow for more flexible partitions which

are not forced to be nested, in this work we introduce a model, the nested Hierarchical

Dirichlet Process (nHDP), that extends the nested Dirichlet process by incorporating it

with the Hierarchical Dirichlet Process (Teh et al., 2006).

Some similarities to this line of work are present in the work of Blei et al. (2010) and Paisley

et al. (2014) on hierarchical topic models. In particular, the nested Chinese Restaurant Pro-

cess (nCRP) (Blei et al., 2010) generates a distribution over infinite trees of topics, which is

combined with the modeling of words in text documents for detecting a hierarchy of topics.

The nCRP could be viewed as an infinite-level extension of the nested Dirichlet Process,

but its use is substantially different than the mixture models proposed by Rodŕıguez et al.

(2008). The nested Hierarchical Dirichlet Process of Paisley et al. (2014) extends the nCRP

by creating a hierarchy of infinite trees of topics, to allow for document-specific topic trees.

Thus this model, while it has the same name as the model proposed by our work, is essen-
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tially different and is not suitable for multi-level clustering. More similarly related to our

model is the work developed by Agrawal et al. (2013); Tekumalla et al. (2015); they present

a nested HDP model, which differs from our proposal but includes our model as a special

case. However, their application is different from the one considered in this work: their

focus is on entity-topic models (that can be seen as a specific instance of multi-level model-

ing in the context of text data); moreover, their proposed sampling algorithm differs from

ours. Additionally, a similar idea was independently developed by Giovanni Rebaudo and

collaborators (personal communication), although their work is focusing on more theoretical

aspects, it considers a different application and a different sampling approach; moreover, a

similar but different model has been simultaneously developed by Denti (2020).

The rest of this chapter is organized as follows: before presenting our model in section 5.3,

we review some Bayesian nonparametric models in section 5.2. In section 5.4 we describe

the crime data and the models for the multi-resolutions analysis; we study the performance

of our mode with simulated data and apply it to the Philadelphia crime data.

5.2. Background

The Dirichlet Process (Ferguson, 1973) is a distribution over random probability distri-

butions; it is characterized by a concentration parameter α > 0 and a base distribution

H. A realization G from the Dirichlet Process is almost surely discrete and can be writ-

ten as G =
∑
pkδθ∗k , where δθ∗k are the atoms of G and pk is the probability associated

with θ∗k. According to the stick-breaking construction of G (Sethuraman, 1994), the atom

locations θ∗k are i.i.d. random variables distributed according to H and the probabilities

pk = bk
∏k−1
j=1(1− bj), where bj

iid∼ Beta(1, α); we will denote the stick-breaking construction

with (pk) ∼ SB(α).

Because of its discreteness, the Dirichlet Process is rarely employed to directly model data;

instead, it is mostly used for specifying a prior distribution for the mixture components in

mixture modeling. Let {x1, . . . , xn} be a set of exchangeable observations drawn from a
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mixture model, and let {θ1, . . . , θn} be the latent mixture components associated with each

observation: xi given θi is drawn from F (θi). To specify a prior distribution on the latent

mixture components we assume θ1, . . . , θn|G
iid∼ G and G ∼ DP (α,H). We then say that

x1, . . . , xn follow a Dirichlet Process mixture model. For the rest of this description we will

mostly focus on the modeling of the latent mixture components, and we will assume that

the observations are drawn from a parametric distribution F parametrized by the mixture

component.

The discreteness of G also implies that among the latent mixture components θ1, . . . , θn

some values will be repeated with high probability. Therefore a partition γ is induced

on the data by the mixture components, with clusters identified by their unique values

θ∗i1 , . . . , θ
∗
iK

: for k = 1, . . . ,K, we define Sk = {i : θi = θ∗ik} and γ = {S1, . . . , SK}. When

G is drawn from a Dirichlet Process, the partition γ is exchangeable and is distributed

according to the Chinese Restaurant Process (Aldous, 1985).

However, often the observations cannot be assumed to be exchangeable because they are

divided into known groups: consider m groups of data, {xj1, . . . , xjnj} for j = 1, . . . ,m, and

the corresponding latent mixture components {θj1, . . . , θjnj}. The Hierarchical Dirichlet

Process (HDP) (Teh et al., 2006) is an extension of the Dirichlet Process that can model

grouped data, so that clusters can be shared across groups. This is achieved by considering

group-specific discrete measures Gj that are realizations from a Dirichlet Process with a

discrete base measure G0, where G0 is itself a realization from a Dirichlet Process. The

mixture components for group j are then sampled from Gj :

G0 ∼ DP (α,H)

(Gj)
m
j=1|G0

iid∼ DP (α0, G0)

(θjl)
nj
l=1|Gj

iid∼ Gj .

Since the Gj are realizations from a Dirichlet Process with discrete measure G0, all the Gj
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share the atoms of G0: Gj =
∑

k pjkδθ∗k , for j = 0, 1, . . .m (see Teh et al. (2006) for the stick

breaking construction for (pjk)). Thanks to the shared atoms of the Gj , observations in

different groups can be assigned to the same cluster; in fact, there is a positive probability

that data in two different groups j1 and j2 are assigned to the same component θ∗k (the

probability is given by pj1kpj2k), for all k, since pjk > 0 for all j, k. Figure 19 shows

a graphical representation of the HDP model. Under the HDP, the distribution on the

partition of all the data aggregated across groups is called the Chinese Restaurant Franchise.

While this distribution is appropriate in the presence of grouped data, it does not capture

any similarities that might be present in various groups.

When the data is divided in groups, but we also expect some of the groups to display

the same behavior, the nested Dirichlet Process (nDP) (Rodŕıguez et al., 2008) can be

useful. This model can be described as a Dirichlet Process in which the base distribution

is another Dirichlet Process. It is characterized by the parameters for the base process, the

concentration parameter α > 0 and the base distributionH, and an additional concentration

parameter β > 0. We can informally write that a realization Q from the nested Dirichlet

process (Q ∼ nDP (β, α,H)) is sampled from Q ∼ DP (β,DP (α,H)) and, more precisely,

Q =
∑
wiδG∗i , where (wk) ∼ SB(β), and G∗i

iid∼ DP (α,H). Since the atoms of Q are

independent realization from a Dirichlet Process, we can write them as G∗i =
∑

k pikδθ∗ik ,

where (pik)k ∼ SB(α) and θ∗ik
iid∼ H:

Q =
∑

wiδG∗i

(wk) ∼ SB(β)

G∗i
iid∼ DP (α,H).

One of the unique properties of the nested Dirichlet Process is that it allows simultaneous

clustering of not only the observations but also of the groups themselves. For each group j,

consider the variable Gj , sampled from Q, and conditionally on Gj , the mixture components
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Figure 19: Diagram of the HDP model. Starting from the top, we represent a possible
realization of G0, which affects the distribution of the group specific Gj , which affect the
distribution of the parameters θjl. The graphical depiction of each discrete distribution uses
vertical lines to represent the atoms of the distribution: the location of each line represents
the location of the atom θ∗k, and the height of each line represents the atom’s weight or
probability. For the purpose of the plot, only a finite number of atoms are depicted. Note
that since each Gj shares the same atoms of G0, the location of the vertical lines is the
same for all the distributions, but the height of the lines varies. Since all the Gj share the
same atoms, the θjl across different groups can take on the same values and thus clusters
can be shared across groups.
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θjl are sampled from Gj . More formally,

Q ∼ nDP (β, α,H)

(Gj)
m
j=1|Q

iid∼ Q

(θjl)
nj
l=1|Gj

iid∼ Gj .

In other words, the group specific variables Gj identify the prior distribution of the group

specific mixture components (θjl)
nj
l=1 and since Q is discrete, different groups can have

the same distribution with positive probability. If Gj1 = Gj2 = G∗h for some h, then

the observations in the two groups are identically distributed and the groups j1 and j2 are

clustered together. Moreover, since the G∗i are discrete, the θjl are also divided into clusters,

identified by the unique values θ∗ik. Figure 20 reports a graphical representation of the nDP

and the model just described.

With the nested Dirichlet Process, two partitions can be considered: the partition of the

groups, identified by the unique values of the Gj and denoted with γ(L), and the partition

of the observations, identified by the unique values of the θjl and denoted with γ(H).

As shown by Camerlenghi et al. (2018), the two partitions induced by the nested Dirichlet

Process are nested: a cluster in the partition γ(H) contains observations from different

groups only if such groups are clustered together in γ(L). The reason for this behavior lies

in the fact that the atoms of Q are independent realizations from a Dirichlet Process; in

fact when two groups are not in the same cluster, i.e. Gj1 = G∗i 6= Gj2 = G∗i′ , the atoms

of G∗i and of G∗i′ are going to almost surely differ from each other since θ∗ik
iid∼ H and H

is a non-atomic distribution (thus there is zero probability that θ∗ik is equal to θ∗i′k′). It

follows that if the atoms of Gj1 and Gj2 are different with probability one, then the mixture

components of the two groups cannot share values: θj1l 6= θj2l′ a.s.

This property is quite restrictive and non-desirable in multi-resolution clustering, and specif-

ically in our application to clustering neighborhoods. In fact, two adjacent PSA could belong

101



Figure 20: Diagram of the nDP model. Starting from the top, we represent a possible
realization of Q, which affects the distribution of the group specific Gj , which affect the
distribution of the parameters θjl. The discrete distributionQ is represented as a rectangular
box containing other discrete distributions as its atoms, the G∗i . The graphical depiction
of each discrete distribution uses vertical lines to represent the atoms of the distribution:
the location of each line represents the location of the atom, and the height of each line
represents the atom’s weight or probability. For the purpose of the plot, only a finite number
of atoms are depicted. Note that different G∗i have different atoms (the vertical lines are
located in different points), and that the Gj coincide with one of the atoms of Q, one of the
G∗i . The Gj that are equal to the same G∗i , such as G1 and G2 which are equal to G∗1, will
share the same atoms and the same weights (location and height of the vertical lines), thus
the underlying θjl can take on the same values and share clusters across groups. However,
if one Gj is equal to a different G∗i , such as Gn which is equal to G∗m, the atoms and weight
are different and the underlying θjl will take on different values from the parameters in
different groups.
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to separate clusters because of overall different trends, but at the same time some census

tracts at the boundaries could display a similar behavior and we would want to cluster them

together and capture such finer resolution pattern. However this would not be possible us-

ing the nested Dirichlet Process, because under that model census tracts in different PSAs

cannot be clustered together unless the corresponding PSAs are in the same cluster. To

allow for more flexible partitions in the next section we combine the nested Dirichlet Process

of Rodŕıguez et al. (2008) with the Hierarchical Dirichlet Process of Teh et al. (2006).

5.3. The Nested Hierarchical Dirichlet Process

To cluster observations that are divided into groups and different groups can display the

same behaviors, the model should allow for both the observations and the groups to be

clustered. Moreover, allowing clusters to be shared between different groups would increase

the model flexibility. It is then natural to combine the nested Dirichlet Process with the

Hierarchical Dirichlet Process; this approach has also been taken by Giovanni Rebaudo and

collaborators (personal communication). Similarly to the nested Dirichlet Process, consider

a discrete distribution Q whose atoms are themselves discrete distributions: Q =
∑
wiδG∗i

and (wk) ∼ SB(β); however, instead of sampling the atoms G∗i from another Dirichlet

Process as in the nDP, they are realizations from a Hierarchical Dirichlet Process: G∗i |G0 ∼

DP (α0, G0) and G0 ∼ DP (α,H). For simplicity we write Q ∼ nHDP (α0, α, β,H):

Q =
∑

wiδG∗i

(wk) ∼ SB(β)

G∗i |G0
iid∼ DP (α0, G0)

G0 ∼ DP (α,H).

If we consider the group-specific variable Gj and the mixture components {θj1, . . . , θjnj},

then each Gj is sampled from Q and conditionally on Gj the mixture components θjl are
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sampled from Gj :

Q ∼ nHDP (α0, α, β,H)

(Gj)
m
j=1|Q

iid∼ Q

(θjl)
nj
l=1|Gj

iid∼ Gj .

As in the nested Dirichlet Process, two groups are clustered together when their group-

specific variables coincide, i.e. Gj1 = Gj2 , and the corresponding observations are sampled

from the same distribution. When the two groups do not belong in the same cluster,

Gj1 = G∗i 6= Gj2 = G∗i′ , then differently from the nDP, the corresponding observations can

still be clustered together because G∗i and G∗i′ share the same atoms and there is a positive

probability that θjl = θj′l′ .

This property is especially important for multiple resolution clustering, as it allows par-

titions to be flexibly recovered, without forcing them to be nested within each other. In

addition, it is important to consider models such as the nHDP when there can be similarities

between groups and some groups contain a small number of observations. In such cases,

it is of great importance to share information between groups and thus benefit from the

increased size that is granted by their clusters.

In Figure 21 we represent pictorially the nDP and HDP models and how they are combined

to construct the nHDP: as the diagram shows, both the nDP and the nHDP share the

discrete measure Q, but its atoms differ, with the atoms in the nHDP being equal to the

measures in the HDP.

5.3.1. Partitions

Thanks to the discrete nature of the realizations from a Dirichlet Process, samples from

these realizations can be divided into clusters, based on their unique values. In the nDP and

nHDP two types of partitions are induced, because of the two levels of discrete distributions:
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Figure 21: Diagram of the nHDP model. Starting from the top, we represent a possible
realization of Q, which affects the distribution of the group specific Gj , which affect the
distribution of the parameters θjl. The discrete distributionQ is represented as a rectangular
box containing other discrete distributions as its atoms, the G∗i . The graphical depiction
of each discrete distribution uses vertical lines to represent the atoms of the distribution:
the location of each line represents the location of the atom, and the height of each line
represents the atom’s weight or probability. For the purpose of the plot, only a finite number
of atoms are depicted. Note that different G∗i have the same atoms but different weights
(the vertical lines are located in the same locations but have different height), and that the
Gj coincide with one of the atoms of Q, one of the G∗i . Even when two groups have different
distributions, such as G1 and Gn which are respectively equal to G∗1 and G∗m, the atoms
are the same, thus allowing the underlying θjl to share clusters even if their groups are not
clustered together.
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one on the groups and one on the observations. The partition on the groups, denoted with

γ(L), is induced by Q on the group-specific distributions Gj , i.e. the clusters S
(1)
k are

defined based on the unique values of the Gj : S
(1)
k = {j : Gj = G∗ik}. The partition on the

observations γ(H) instead is induced by the collection of Gj on the θjl, and the clusters S
(2)
h

contain observation l in group j if its latent variable θjl is equal to the unique value θ∗kh :

S
(2)
h = {(j, l) : θjl = θ∗kh}.

We can think of these two partitions in a hierarchy: if we represent the relationship between

groups and observations in a tree, where groups are the first level below the root and

observations are in the next level, branching out from the groups nodes, like in Figure 21,

then γ(L) is the partition of the first level of the tree and γ(H) is the partition of the second

and lowest level.

We now consider the distributions induced on these partitions by the nHDP.

Proposition 2. The marginal prior distribution induced by the nHDP (α0, α, β,H) on the

partition of groups γ(L) is the Chinese Restaurant Process:

p(γ(L)) = CRP (β).

Proof. Conditional on G0, Q is a realization of a Dirichlet Process with base measure equal

to a DP (α0, G0); this means that Q’s atoms G∗i , despite sharing the same atoms θ∗k, are all

different a.s., because their sequence(s) of weights (pik) is(are) all different a.s.. Moreover

Q’s weights (wk) are generated according to the stick-breaking construction with parameter

β. Thus, conditional on G0, the conditional distribution of Gj given G1, . . . , Gj−1 follows

the Pólya Urn scheme:

Gj |G1, . . . , Gj−1, G0 ∼
1

j − 1 + α

j−1∑
l=1

δGl +
α

j − 1 + α
DP (α0G0).

From this follows that p(γ(L)|G0) = CRP (β). To find the marginal distribution of γ(L) we

need to integrate out G0; for this purpose, note that G0 only affects the distribution of a
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new observation, i.e. DP (α0G0). Then we just need to show that, marginally on G0, a new

observation G∗ is different from the previously observed G1, . . . , Gj−1. Note that for any

Gi, p(G
∗ = Gi|G0) = 0, because the Dirichlet Process is a non-atomic distribution on the

space of probability measures. Since this is true for any G0, p(G∗ = Gi|G1, . . . , Gi−1) =∫
p(G∗ = Gi|G0)p(dG0|G1, . . . , Gi−1) = 0.

Proposition 3. The prior distribution induced by the nHDP (α0, α, β,H) on the partition

of observations γ(H) conditional on the partition of groups γ(L) is a Chinese Restaurant

Franchise distribution, where the groups are defined by the clusters of γ(L).

Proof. Let γ(L) be the partition of groups, where each cluster gathers together the groups

that take on the same value of the group specific distribution: for example let S
(1)
k = {j :

Gj = G∗hk} where hk corresponds to the index of the unique value of Q associated with

those Gj . Then the observations in the groups that belong to the same cluster share the

same distribution: if we merge together in a vector the observations in the groups that

belong to the same cluster, θ
S

(1)
h

= {θj1, . . . , θjnj : j ∈ S(1)
h }, then

θ
S

(1)
h

|G∗h
iid∼ G∗h,∀h

G∗h1
, . . . , G∗hK |G0

iid∼ DP (α0, G0)

G0 ∼ DP (α,H).

Thus, conditional on γ(L), we can divide the θjl into the collections defined by the clusters Sh

and they are distributed according to a Hierarchical Dirichlet Process. By considering the θjl

that take on the same values across the collections we can define γ(H), whose distribution

is described by the Chinese Restaurant Franchise with groups defined by the clusters of

γ(L).

107



5.3.2. Posterior sampling

In this section we describe the Markov Chain Monte Carlo sampling schemes for the Nested

Hierarchical Dirichlet Process mixture model. For simplicity we consider a model where F

and H are conjugate distributions, so that the mixture components parameters θ∗k can be

integrated out.

We consider a sampling scheme in which only the latent partitions at the group level γ(L)

and at the observation level γ(H) are iteratively sampled. In a first step we sample γ(H)

given the group level partition and the data, and as we will show this can be carried out

with one of the posterior sampling schemes for the HDP, for example those described in Teh

et al. (2006). The second step, to sample γ(L) given the observation level partition, requires

a more complex procedure: since the dimensionality of the space of γ(H) changes when

we change γ(L), this problem falls into the category of models described by Green (1995).

However, the reversible-jump framework described by Green cannot be simply applied in

this setting, because of the discreteness and complexity of the space of γ(H). Instead,

we formulate this step by specifying a proposal that allows for movements in the product

space of (γ(L), γ(H)): we propose a move for γ(L) and conditional on this proposed value we

propose a value for γ(H) that is consistent with the new configuration.

Sampling γ(H). Given the partition of the groups γ(L), we know how the observations are

divided into groups in the hierarchy or, using the terminology from the Chinese Restaurant

Franchise, we know how the costumers (the observations) are divided into restaurants (the

clusters of the group partition). Specifically, for all the groups in cluster S
(1)
k , we can

aggregate all of the observations together and they form a group in the new hierarchy or a
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restaurant in the metaphor terminology.

(θjl : j ∈ S(1)
k )|G∗k

iid∼ G∗k

G∗k|G0 ∼ DP (α0, G0)

G0 ∼ DP (γ,H).

Thus, we can sample the partition of the θjl using the standard Chinese Restaurant Fran-

chise sampling schemes: we use the Chinese Restaurant Franchise representation and sample

the assignment of costumers into tables within each restaurant and the assignment of tables

to dishes across restaurants (Teh et al., 2006). However, rather than exploring the space

with local moves that sample each cluster assignment iteratively using Gibbs-type updates,

we modify the partitions with broader ‘split-merge’ moves that improve mixing (Jain and

Neal, 2004b). We extend the algorithm of Wang and Blei (2012) to perform split-merge

moves not only in the update of the partition of costumers into tables but also in sampling

the partition of tables into dishes. See the Appendix D.1 for more details.

Sampling γ(L). To sample from the conditional posterior of γ(L), we need to take into

account the way in which it affects the partition γ(H): γ(L) defines with its clusters the

division of observations into restaurants; when the restaurants structure is changed, tables

need to be rearranged and so do the dishes associated with them. Moreover for each value

of γ(H), the partition of groups γ(L) is uniquely identified, meaning that the conditional

posterior p(γ(L)|γ(H),x) is a point mass. Thus we cannot simply perform a Gibbs sampling

step: a more elaborate procedure, with the flavor of a reversible-jump MCMC step, needs

to be used.

The complexity of the structure of γ(H) prevents us from directly applying the reversible-

jump MCMC framework (Green, 1995); instead we use a Metropolis-Hasting step, where the

proposal updates the value of both partitions: we first propose a move for γ(L) using a split-

merge move, and conditional on that move we propose a new value of γ(H), by rearranging
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the tables in the new restaurant configuration. In split moves, tables are also split using a

deterministic algorithm; in merge moves, tables are merged according to a sampling scheme

that makes the split move reversible. See Appendix D.1.2 for more details.

5.3.3. Heuristic for posterior sampling

The combinatorial complexity of the space of partitions the MCMC needs to explore makes

mixing difficult and times to convergence very long. To help with the exploration of the

space, we devised a heuristic for posterior sampling. Instead of simultaneously sampling

the LR and the HR partitions, we work iteratively:

1. Fixing γ(L) to the partition with n clusters, initialize γ(H) to the partition with n

clusters and run the MCMC to sample only the HR partition and find an estimate

γ̂(H).

2. Initialize γ(L) to the partition with n clusters and γ(H) to γ̂(H). Run the standard

MCMC algorithm, which samples both γ(L) and γ(H), and obtain an estimate of the

LR partition γ̂(L).

3. Fixing γ(L) to γ̂(L), initialize γ(H) to the partition with n clusters and run the MCMC

to sample only the HR partition.

This algorithm allows us to have approximate samples from γ(L), from the second step, and

from γ(H), from the third step. The estimates of the partitions can be found by minimizing

the posterior expected variation of information (VI) distance (Wade et al., 2018). The

choice of initializing the partitions to the “n-cluster” configuration is purely a practical

one, because it reduces the change of the partition getting stuck in the configuration with

one cluster, from which is often difficult to escape.

In the next section we compare its behavior with the standard MCMC algorithm, and the

more restrictive HDP, on synthetic data analyses and real data.
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5.4. Application to Areal Urban Data in Philadelphia

Areal data, i.e. data collected or aggregated within a region or areal unit, is present in

many disciplines, such as economics, demography, or epidemiology. In fact, often for privacy

reasons the precise geographic location is not collected or released, and the only available

geographic information is the areal units the data ”belong” to. The choice of the areal units

can vary and, as a consequence, the data is often available at different granularity levels,

or at multiple ones. For example, when the precise geographic information is known to the

researchers but cannot be released, it can be aggregated at multiple possible levels, since

different predictor information may be available for each level. Alternatively, data that

is available at fine granularities can be aggregated to coarser granularities, to reduce the

dimensionality of the problem. Examples of areal data are socio-economic indicators, crime

levels or patients affected by a disease. All of these measures can be aggregated within

lower resolution regions, by summing or averaging, and lead to a simpler and less detailed

description of the phenomenon of interest. Especially when the number of regions is large,

we are interested in clustering those regions in order to group together those with a similar

value of the the parameter of interest; this approach can aide exploratory data analysis, to

create interpretable maps, or can simply be used in mixture modeling to share information

between different areas.

However, when the data are available at multiple granularities, it is unclear which level

should be used for the analysis. For examples, cities in the US are divided in census tracts,

which are then divided into block groups, which are further divided into blocks. Often the

granularity level is chosen in an arbitrary way. Instead of fixing the resolution at which

to perform our analysis, we want to be able to model the data at multiple resolutions.

By doing this, a possible outcome in our analysis could be the a posteriori assessment of

whether one resolution is overall better than the other. However, a more likely scenario

seems to be one where one resolution is more appropriate for certain parts of the city and

the other resolution is better for other urban areas. For example, central areas are more
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densely populated and heterogeneous, compared to suburban areas. In the former we might

expect a phenomenon like crime to be changing at a finer granularity than in the latter. In

such case, analyzing the data at one level of resolution would be restrictive and important

informations about the phenomenon could be lost. Instead, by modeling multiple resolution,

we are able assess which level is more appropriate for a subset of the data.

In the criminology community there has been a particular interest in studying different

levels of resolutions. In particular, studies have explored which granularity level had the

largest spatial variation of crime and they have shown that the majority happens at micro

levels such as street segments, rather than macro levels such as neighborhoods (see e.g.

Schnell et al., 2017; Steenbeek and Weisburd, 2016; OBrien and Winship, 2017). However

it is unclear if this finding is constant in different areas, such as central and suburban areas,

or if some differences can be found. The maps of the spatial distribution of crime in Chicago

reported in Schnell et al. (2017) suggest that our conjecture could prove to be true.

To cluster data at multiple resolutions, we can use nested models. While nested models

have been studied for a long time, to the best of our knowledge they have never been used

for multi-granularity modeling and clustering. In Rodŕıguez et al. (2008) for example they

have been used for clustering hospital patients and the hospitals themselves based on their

distribution of mixing components. While hospitals are supersets of patients, this cannot

be considered as an example of multi-granularity data, as the interest lies in the measuring

patient-level phenomena. Instead these models can be used to their full potential to describe

situations when there is no specific preference for a granularity level.

Consider now a low resolution or coarse granularity level, {A1, A2, . . . , Am} and a high

resolution or fine granularity level {A11, . . . , An11, . . . , A1m, . . . , Anmm}. The high resolution

areal unit Alj is fully contained (or nested) within the low resolution areal unit Aj (Alj ⊆

Aj). With a similar notation we denote with ylj the observation for the high resolution

unit Alj and with yj the observation for the low resolution unit Aj ; in situations where it is

not available, yj will be artificially constructed by averaging (or summing) the observation
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values of the units nested in Aj : yj = 1
nj

∑nj
l=1 ylj .

Our analysis can be performed with only one level of high resolution of data, or with multiple

levels of data, one for each resolution level. In the first case, low resolution units Aj are

clustered based on the proportion of mixture components µlj of their high resolution units;

in the second case the low resolution partition is influenced by both the distribution of high

resolution mixture components and by the low resolution data itself yj . In either case, the

high resolution clustering is influenced by the high resolution data ylj and by the partition

of low resolution units, as it defines its hierarchical structure.

We first consider a model with only one level of high resolution of data:

ylj |µlj ∼ N(µlj , σ
2)

µlj |Gj ∼ Gj

Gj |Q ∼ Q

Q ∼ nHDP (α0, α, β,H)

H = N(0, k0
−1σ2)

σ2 ∼ Inv −Gamma(α0, β0).

(5.1)

Note that σ2 represents the within-cluster variance, because all the observations ylj cor-

responding to cluster Ck = {(l, j) : µlj = µ∗k} have the same mean θ∗k and within-cluster

variance σ2. The cluster specific means instead are normally distributed with mean zero

and variance k−1
0 σ2, and it is important that this distribution covers the range of the data.

Thus it is important to tune the prior for σ2 so that we can specify the level of variation of

the data within a cluster and to correctly choose k0 so that the between-cluster variation

covers the data. The hyper-parameters of the nested Hierarchical Dirichlet Process instead

can be interpreted in the context of partitions of costumers into tables and of tables into

dishes (for the high resolution partition) and of the partition of low resolution units.
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Note that we can also describe this model in terms of the partitions induced by the nHDP:

let γ(L) be the low resolution partition and γ(H) the high resolution one. Moreover, let zjl

be the cluster membership of yjl induced by γ(H).

ylj |zjl,µ∗, σ2 ∼ N(µ∗zjl , σ
2)

µ∗k|σ2 ∼ N(0, k0
−1σ2)

γ(H)|γ(L), α, α0 ∼ CRF (α, α0; γ(L))

γ(L)|β ∼ CRP (β)

σ2 ∼ Inv −Gamma(α0, β0).

We then consider a model with two levels of data, in which we additionally model the low

resolution data as normal yj |θj ∼ N(θj , σ
2). The latent parameters θj are shared if two

low resolution areas belong in the same cluster. More precisely, let zj be the low resolution

cluster membership induced by γ(L), with Gj = G∗zj . Let θ∗k be the unique values for the

θj ’s and yj |θ∗k, zj ∼ N(θ∗zj , σ
2). In other words, the low resolution partition induced by the

Gj affects the values of the θj .
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ylj |zjl,µ∗, σ2
H ∼ N(µ∗zjl , σ

2
H)

µ∗k|σ2
H ∼ N(0, k0

−1σ2
H)

yj |θ∗, zj , σ2
L ∼ N(θ∗zj , σ

2
L)

θ∗k|σ2
L ∼ N(0, k−1

1 σ2
L)

γ(H)|γ(L), α, α0 ∼ CRF (α, α0; γ(L))

γ(L)|β ∼ CRP (β)

σ2
H ∼ Inv −Gamma(αH , βH)

σ2
L ∼ Inv −Gamma(αL, βL).

(5.2)

Given these two models for single and multi-level data, in the following section we describe

the simulation analyses that compare the nHDP with other methods.

5.4.1. Synthetic analyses

In the following we describe different analyses of our method with some competitors. We

first describe the analysis of a synthetic data set constructed on a subset of Philadelphia’s

block groups and census tracts. We then study the performance over a set of 50 synthetic

datasets, in a simulation analysis of single-level data first and multi-level data subsequently.

Synthetic data analysis In the first analysis we test the correct behavior of our model

and MCMC algorithm on a synthetic dataset. We generated partitions and data for a

subset of the Philadelphia census tracts and block groups, and visually test the recovery

of the ‘true’ partitions. In figure 22 we represent the data and partitions used to generate

the data. After having designed the LR partition, we have chosen different high resolution

cluster proportions for each low resolution cluster. For example, the blue cluster (labelled

‘2’ in the left panel of figure 22) there is a 50% proportion of green and pink HR clusters

(labeled ‘1’ and ‘4’ in the central panel of figure 22). In the light blue LR cluster (labelled
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‘1’ in the left panel) there is a 100% proportion of the green HR cluster.

We ran our MCMC algorithm with the synthetic data represented in right panel of figure 22

and we considered two chains of 5000 iterations, discarding the first 2000 as burn in, and

combined the two sets of samples. The hyper-parameters set were: ηLR = ηCT = ηTD = 1,

α0 = 3, β0 = 1, k0 = 0.01. In figure 23 we report the estimated partitions. We can

notice that the HR partition coincides with the true HR partition (used to generate the

data). In the LR partition we notice a few discrepancies, in particular two census tracts

are being misclassified and the total number of clusters estimated is less than the original

total number of clusters, by one.

We also compare our model with using a simple HDP model, which even though it does

not allow for multi-resolution modeling, it can be useful for estimating the high resolution

partition. We use the HDP with two configurations: the first, represented in the top panels

of figure 24, assumes the presence of one group of data, and fits the HDP with one restaurant;

the second assumes the presence of as many groups as census tracts, and fits the HDP with

a restaurant for each census tract. As we see in figure 24, the partitions recovered are very

similar to the one used to generate the data. In the top panels we notice that it recovers a

smaller number of clusters, while in bottom panel we notice that the number of clusters is

larger than in the true partition.

Simulation setting 1 (single-level data) In a second analysis, we test how our method

compares on a wider range of data and partitions, generated according to a finite dimensional

approximation1 of model 5.1: we sample the LR partition γ(L) from the DP(ηLR); given the

restaurant structure defined by γ(L), sample the HR partition γ(H) from the HDP(ηCT , ηTD).

Given γ(H), we consider equally spaced and centered around zero cluster-specific means µk

and sample yi ∼ N(µzi , σ
2). We specify these parameters to have somewhat separated

1We sample a finite dimensional approximation realization of a DP and HDP, using truncated stick-
breaking, and then sample the categorical variables corresponding to the cluster memberships from the
“finite dimensional” probabilities.
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Figure 22: Synthetic data and corresponding partitions. Left panel: low-resolution parti-
tion, where census tracts (delineated in blue) in the same cluster have homogeneous pro-
portions of HR clusters. Right panel: observed data for each block group (delineated in
red).

Figure 23: Partitions estimated using nHDP. Left panel: estimated low-resolution partition,
with colors representing unique clusters. Right panel: estimated high-resolution partition,
with colors representing the cluster average of y. This panel can be useful for noticing the
similarity between the real data and the estimated cluster means.

Figure 24: Partitions estimated using HDP with different number of groups (or restaurants).
Left panel: estimated HR partition using one group (all the census tracts represent one
restaurant); right panel: estimated HR partition using many groups, specifically one for
each census tract. Colors represent the cluster average of y. LR partitions are not reported
as the HDP does not estimate it, but it rather fixes it.
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clusters that can be distinguished but not in a trivial way2 We choose σ = 0.5 and µk+1 −

µk = 2.5. Moreover, to make the low-resolution clusters distinguishable, we make sure

that the proportion of high-resolution clusters in each low-resolution clusters is actually

different, by artificially merging low-resolution clusters that have the same proportions. We

generated 50 partitions using ηLR = ηCT = ηTD = 1. We ran two MCMC chains for 10

thousands iterations each and discarded the first 2000 as burn-in.

R2
VI R2

bayes MSEVI MSEbayes VIHR VILR

nHDP 0.739 0.813 0.509 0.356 0.324 1.058
nHDP-heuristic 0.782 0.849 0.101 0.093 0.169 0.000
HDP-oracle 0.792 0.845 0.059 0.049 0.097 1.050
HDP-one 0.760 0.841 0.232 0.148 0.289 1.116
HDP-many 0.795 0.849 0.067 0.054 0.135 4.344

Table 4: Results for simulation setting 1, with data generated according to the nHDP
mixture model 5.1. The measures reported are averaged over the 50 simulated datasets:
R2 and MSE of the cluster-specific means, computed with the estimator given by partition
minimizing VI (VI) and with the Bayesian posterior mean (bayes), VI distance between the
estimated and true HR and LR partitions.

In table 4 we compare the performance of different models: the three models previously

described (“nHDP”, HDP with one restaurant “HDP-one”, HDP with many restaurants

“HDP-many”), the heuristic for the nHDP “nHDP-heuristic”, and what can be considered

as an oracle HDP, “HDP-oracle”, in which the restaurant structure is defined by the ‘true’

low resolution partition. We report several measures. Firstly, we report an equivalent of

R2: denoting with (µ̂i) the estimate of the means, we measure with R2 the ratio of the

explained sum of squares and of the total sum of squares,

R2 = 1−
∑

i(yi − µ̂i)2∑
i(yi − ȳ)2

.

Secondly, we report the MSE for the estimation of the cluster specific means: 1
n

∑n
i=1(µ̂i −

µi)
2. Both these measures are reported for two estimators. The “VI” estimator finds an

estimate γ̂VI of the partition by minimizing the posterior expected variation of information

2We experimented also with settings where the clusters are well separated and we found that in such
cases the performance is better.
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(VI) distance (Wade et al., 2018), and computes µ̂i as the posterior mean conditional on

γ̂VI. The “bayes” estimator averages over the partitions and estimates µ using the posterior

mean. Thirdly, we report the VI distance between the estimated partition γ̂VI and the true

partition used to generate the data, for both the high-resolution and the low-resolution

partition. When the HDP is used and as a consequence no LR partition is estimated

(“HDPone”,“HDPmany” and “HDPoracle”), we used respectively the one-cluster partition,

the one with the maximum number of clusters and the “true” low resolution partition.

While we are not really interested in the VI distance between these artificial partition and

the true one, we report it as a reference point.

We can see in table 4 that nHDP has the best estimation for the LR partition, as expected,

and that “HDP-oracle” also almost the best performance overall. However, we can notice

that while the HDP with one restaurant (“HDPone”) has worse performance than nHDP,

the HDP with many restaurants (“HDPmany”) has performances comparable to the oracle

HDP. We note that while it does not achieve the best performances, the heuristic for nHDP

achieves a strong improvement with results slightly worse than HDP-oracle.

From these simulation analysis it seems that, when the interest lies in estimation of the high-

resolution parameters, the nHDP does not have strong advantages over using a standard

HDP (“HDP-many”), and neither does knowing the true low-resolution partition as in

“HDP-oracle”. However, it is important to remember that the purpose of the nHDP is not

only better estimation of high resolution data, but also (and most importantly) simultaneous

estimation of multiple resolution data, which is not achievable using the HDP.

Simulation setting 2 (multi-level data) In a third analysis we test the performance of

our method under the multilevel data model 5.2. We use the same simulated datasets used

for table 4, and construct the low resolution data by setting the mean values separated by

five standard deviations, and sampling from independent normal distributions. In table 5 we

compare the performance on high-resolution data for the same models reported in table 4,

and we compare the performance on the low-resolution data for only the nHDP and the

119



heuristic for the nHDP.

high-resolution R2
VI R2

bayes MSEVI MSEbayes VI

nHDP 0.785 0.840 0.097 0.094 0.128
nHDP-heuristic 0.791 0.847 0.052 0.049 0.099
nHDP-oracle 0.792 0.845 0.059 0.049 0.097
HDP-one 0.760 0.841 0.232 0.148 0.289
HDP-many 0.795 0.849 0.067 0.054 0.135

low-resolution R2
VI R2

bayes MSEVI MSEbayes VI

nHDP 0.822 0.863 0.080 0.070 0.143
nHDP-heuristic 0.815 0.870 0.088 0.064 0.136

Table 5: Results for simulation setting 2, with data generated according to the nHDP
mixture model 5.2. The measures reported are averaged over the 50 simulated datasets:
R2 and MSE of the cluster-specific means, computed with the estimator given by partition
minimizing VI (VI) and with the Bayesian posterior mean (bayes), and VI distance between
the estimated and true partitions. Measures are reported for both the high-resolution and
the low-resolution data.

We notice how using the low resolution data helps the recovery of the high resolution

structure too and helps the nHDP and nHDP-heuristic achieve much better performances

compared to table 4. In particular, the “nHDP-heuristic” achieves as good performance as

“HDP-oracle”, and both show better results compared to the “HDP-many”.

5.4.2. Clustering of crime in Philadelphia

The correct modeling of crime trends at a high resolution neighborhood level can benefit

police departments, urban planner and city officials. We consider crimes aggregated within

neighborhoods to recover areas of high and low crime levels; moreover, by considering

neighborhoods measures we can incorporate our estimates with predictor information, which

is only available at the neighborhood level.

We are interested in finding clusters of neighborhoods that display similar crime behaviors.

The crime data are made publicly available by the Philadelphia Police department, which

reports each reported crime type, GPS location and time. We focus on violent crimes, which

consist of homicides, rapes, robberies and aggravated assaults, according to the definition

by the Uniform Crime Reporting program of the FBI. We then aggregate these data by
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Figure 25: Maps of Philadelphia. Left panel: Philadelphia divided into 6 police divisions
(PDV), delineated in blue. Right panel: Philadelphia divided into 66 police service areas
(PSA). Each area is colored according to the mean level of crime in that region. Specifically,
it represents the mean over 2006-2018 of the log-transformed crime counts.

counting how many violent crimes happened in each year within an areal unit boundaries

and average those counts over the years from 2006 to 2018. Instead of averaging directly the

yearly counts, we consider a log-transformation of the counts, to model the data as normally

distributed. However, since some neighborhoods might have no crimes in some years, we

consider the inverse hyperbolic-sine transformation, which is a good approximation to the

logarithm but it’s well defined at zero: if ct represents the count in year t in an areal unit,

then yt = log(ct +
√
c2
t + 1) − log(2) is the transformed value. Thus our observables are

the yearly average of the transformed number of crimes: y = 1
T

∑T
t=1 yt. Because of the

approximate logarithmic transformation, note that the data at the lower resolution is not

the sum or aggregation of the observations of the high-resolution units.

Several multi-resolution subdivisions of Philadelphia exist and in this work we consider two

different ones: we analyze crimes aggregated at the block group and census tract levels, and

we consider the subdivision induced by police departments.
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Police Service Areas and Police Divisions

We first consider the subdivision of the City of Philadelphia defined by police divisions,

districts and service areas. Philadelphia is divided in six police divisions (PDV), which are

aggregations of police districts; there are twenty one police districts (PDS), each is under

the leadership of a police Captain and is divided into two to four police service areas (PSA);

Philadelphia is divided in 66 PSA, which are the smallest police units, each with their own

team of police officers. To study heterogeneity of crime in police areal units we can consider

the average of log-transformed yearly number of crimes within each PSA and within each

PDV, the lowest and highest resolution levels. In Figure 25 we represent the real data,

together with the boundaries of PSA (in red) and PDV (in blue). As the figure shows,

there is some heterogeneity in the mean crime level in Philadelphia, and we can find some

pockets of lower crime, together with one PSA of extremely low crime (the blue region in

south west Philadelphia corresponds to the area of the airport).

For the analysis of the PSA data, we set the nHDP hyper-parameters to allow a relatively

large number of high-resolution clusters: ηLR = 5, ηCT = 4 and ηTD = 3. We choose a

rather informative prior for σ2
H (αH = 160 and βH = 10, so that the prior median value

for σH is 0.25) to recover partitions with small within-cluster variance. For the model

with multi-level data, model 5.2, we set a similarly informative prior on σ2
L (αL = 10 and

βL = 0.1, so that the prior median value for σL is 0.1).

In Figure 26 and 27 we report the partitions recovered under these hyper-parameters, under

model 5.1 and 5.2. The left panel refers to the low-resolution partition, while the right

panel to the high-resolution one. All the partitions are estimated using posterior samples

and minimizing the posterior VI distance (Wade et al., 2017).

Under both models, the high-resolution partition recovers several clusters, as desired. In

particular, the regions of low crime in South Philadelphia and North West Philadelphia

(labelled by ‘A’, ‘B1’ and ‘B2’) are separated from the rest, which is divided into areas of
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Figure 26: Partition recovered using an informative prior on σ2. Top-left panel: the low
resolution partition estimate, pictured using a different color for each cluster. Top-right
panel: the high resolution partition estimate, pictured using the same color scale as the real
data, i.e. the color for each cluster represent the mean of the data in such cluster.

Figure 27: Partition recovered minimizing posterior VI, using non-informative prior on σ2
LR

and an informative prior on σ2
HR. Top-left panel: the low resolution partition estimate.

Top-right panel: the high resolution partition estimate. Both maps use the same color scale
as the real data, i.e. the color for each cluster represent the mean of the data in such cluster.
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medium and high crime. We can instead notice some differences under the two models in

the low-resolution partitions. Under model 5.1, depicted in Figure 26, the low-resolution

partition is driven only by the proportion of high-resolution clusters. Since the western

division (colored in blue in the left panel of Figure 26) is the only one containing low levels

of crimes such as the airport area (labelled by ‘A’), it gets separated in its own cluster.

But under model 5.2, the low-resolution data drives the partition as well, and the partition

recovered finds again two clusters, but this time separates the southern and central division

(colored in green in the left panel of Figure 27) from the rest of the city.

While the analysis of Police Service Areas and Police Divisions can be considered instructive

for the insights we have from using single or multi-level data, the disparity of resolution

between Police Divisions and Police Service Areas makes this analysis not very useful in

practice. In fact, the very high level of aggregation that we see in the Police Division data

washes out any differences between Police Service Areas. This is a common problem, and it’s

known as the ecological fallacy. In the section, we will see how, with more similar granularity

levels, the low-resolution data can be used to gain information about the high-resolution

data.

Census tracts and block groups: West Philadelphia

We consider now the subdivision in block groups and census tracts, and we focus our analysis

on the neighborhood of West Philadelphia. This part of the city, home of the University

of Pennsylvania, is characterized by high heterogeneity in crime levels. For example, the

number of violent crimes in each block group, averaged from 2006 to 2018, varies from a

minimum of 6.2 (in a block group at 42th St and Baltimore St) to a maximum of 108.6 (in a

block group at 46th St and Market St), two parts of the city that dist approximately 1 mile.

Similarly, the minimum and maximum average number of violent crime at the tract level

happen at a distance of approximately 1.5 miles (even though they correspond to different

parts of West Philadelphia).
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Figure 28: Log-transformed number of violent crimes, averaged over the years from 2006 to
2018, aggregated at the census tract (left panel) and block group resolutions (right panel).

In fact, when working with different resolutions things can actually look really different

depending on the level chosen. Instead of limiting ourselves to only working with census

tracts or only block groups, we model both. We consider the log-transformed number of

violent crimes in a unit, averaged over the years from 2006 to 2018.

In figure 28 we represent the data. It is interesting to note that the block group with the

smallest average number of crime (labelled with A) is contained in a census tract (labelled

with B) whose crime level is not among the lowest ones.

We analyzed this region with the multi-data model 5.2, after rescaling the two variables ylj

and yj to be centered at zero and have unit variance.

In figure 29 we report the partitions recovered when we chose highly informative hyper-

parameters that would allow for relatively small variation within clusters. We notice that

various regions in the north of West Philadelphia seem to be described by the clusters found

at the lower resolution of census tracts, while regions in the center and south-east seem to

be better described by the higher resolution of block groups. For example, the region in

the center, highlighted by a circle in the right panels, displays a much finer partition at

the block group resolution in the bottom right panel, which is not well described by the

low resolution clustering in the top right panel. While the data aggregated at the census
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Figure 29: Real data centered and scaled (left panels) and estimated partitions (right panels)
for census tracts data (top panels) and block groups data (bottom panels).
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tracts level identifies such area with moderately large levels of crime, colored in orange,

the finer resolution data allows us to recognize many block groups with medium level of

crime, colored in yellow, together with the higher crime level areas, colored in orange and

red. Moreover, the region around the eastern part of Baltimore street, labelled A and

B in respectively the block group and census tract plots, is characterized by areas with

extremely low levels of crime, colored in blue, which are adjacent to areas with medium

crime, colored in yellow. It is also interesting to notice that the clusters found at the higher

resolutions are not nested in the lower resolution clusters. This flexibility is allowed by the

nested Hierarchical Dirichlet Process but would not be possible under the nested Dirichlet

Process.

5.5. Discussion

Choosing a level of resolution when working with spatial data is often challenging and

can affect results. In this work we explored the multi-resolution approach, that instead of

choosing one level, simultaneously models multiple resolutions. In particular we propose

using nested models for clustering data at multiple resolutions and we extended the nested

Dirichlet Process (Rodŕıguez et al., 2008) to generate more flexible partitions: the nested

Hierarchical Dirichlet Process allows us to find partition of low resolution and high resolution

data, while not imposing restricting constraints in the clusterings structure.

We proposed a split-merge MCMC algorithm to draw samples from our model and we show

its performance in simulated analysis, in cases both where the focus is on mixture modeling

of only high-resolution data, and where the interest lies in partitions of both low and high

resolution data. We analyze crime levels in Philadelphia, aggregated within police districts

boundaries and within census tracts and block groups.

While split-merge algorithms are known for having good mixing properties, in such high-

dimensional space it might be convenient to develop a Gibbs sampling step for the updating

of the low-resolution partition. While this cannot be simply computed analytically, it is
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possible to numerically compute the conditional probabilities and it could reveal a more

efficient way of sampling from the posterior distribution.

However, even the most efficient MCMC algorithm can be extremely slow for high dimen-

sional problems such as this when the number of units or when the levels of resolutions

increase. It is important to develop more efficient ways of analyzing multi-resolution data.

It is possible to do this, under a different model, using Bayesian Additive Regression Trees

(BART) (Chipman et al., 2010) and it will be the object of future research.

While in this work we focused on the application to urban crime, many other domains can

benefit from multi-resolution modeling, from the social sciences to epidemiology, which also

use data aggregated within areal units. Another example of a domain that could benefit

from multi-resolution models, while not using geographical areal data, is neuroimaging: by

clustering both brain regions and voxels, multi-resolution models could allow the discovery

of similarities between brain regions while recovering patterns at the voxel level.
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Chapter 6

Conclusion and Future Directions

Spatial data often varies in a smooth, continuous manner, but is also characterized by occa-

sional discontinuities, where near locations display starkly different behaviors. We explore

models and methods to combine smoothness with discontinuities, in particular through

partitions of areal data.

We consider the applied problem of studying the spatial variation of crime dynamics in the

City of Philadelphia. Accurate modeling of urban crime dynamics can offer benefits to law

enforcement officials for deployment of resources for public safety, to urban planners for

better understanding of the effects of socio-economic factors and the built environment on

crime, and to city officials for improvement of the quality of life in the city. We consider crime

counts in local neighborhoods in the period of 2006-2015, combine them with socio-economic

and built environment predictors and study the percentage linear change over time. We

compare several Bayesian approaches while sharing information either globally or locally

across the city. We find that imposing local shrinkage between proximal neighborhoods using

a spatial conditional autoregressive (CAR) prior achieves the best out-of-sample predictions

of violent crime. We also recover spatial discontinuities by allowing the adjacency matrix

of the CAR model to vary. We find that discontinuities for the trend over time and for the

mean level of crime do not necessarily overlap.

We then extend this model, by incorporating the spatially smoothing CAR model with

spatial clustering, to recover parts of the city displaying different behaviors and to allow

for discontinuities by assuming a “CAR-within-cluster” model. We do not assume that the

partitions in the mean level of crime and in the trends over time coincide; therefore we try

to identify pairs of partitions of areal units. For such vast discrete spaces, stochastic search

methods are computationally prohibitive when the number of units to partition is large.
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We introduce a method that by solving a single optimization problem, approximates the

posterior distribution by identifying partitions with highest posterior probability. Through

synthetic data we show that our Particle Optimization method has good estimation and

partition recovery properties. We also use it to analyze the Philadelphia crime data and

find that many of the recovered discontinuities coincide with natural or built barriers, such

as parks and streets.

In our analysis of crime in Philadelphia, we find that the prior can have a strong influence

on the inferences. We compare some distributions for partitions of areal data and find that

many are not mathematically manageable, because they induce non exchangeable partitions

and they are specified up to a normalizing constant. We empirically study some properties

and find that some distributions, even though designed with the purpose of adapting the

Dirichlet Process prior to areal data, completely distort its behavior. Other distributions

display more similar behaviors to the Dirichlet Process prior but pay the price of not

inducing strong spatial behaviors. We propose two distributions, the SBM-PPMx and the

Areal-PPMx. The first has nice mathematical properties of coherence across sample sizes,

but does not show good empirical properties. The second has the opposite behavior: it does

not satisfy the coherence property but works well empirically.

Finally, we extend the problem of clustering to multiple resolution data. Areal data can

be aggregated at different granularities, and choosing one can be restrictive. It is possible

to cluster data at multiple levels using nested models such as the nested Dirichlet Process,

but this model induces specific restrictions on the partitions induced. To allow for more

flexible partitions, we introduce the nested Hierarchical Dirichlet Process, and we describe a

posterior sampling algorithm. We show the performance of our model on synthetic and real

data and we find that sometimes the standard MCMC algorithm has difficulties exploring

the complex discrete space. We propose a heuristic that approximates the sampling distri-

bution and achieves performance almost as good as the oracle’s. We apply our model to

crime data. We find that overall higher variation is present at higher-resolutions, but that
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suburban areas display less high-resolution heterogeneity, and thus can be appropriately

described by lower-resolution levels.

6.1. Next Steps

In this thesis we have approached various challenges posed by clustering areal data, but

more work needs to be done.

Our Particle Optimization method works very well when the model is conjugate and we

can explicitly compute the marginal probability of the data given the unknown partitions.

However, many more complex models don’t have such feature. Neither do models using

less mathematically convenient prior distributions for partitions, such as those described in

this work. Being able to extend this method to more general problems would be certainly

useful in many settings.

The problem of choice of prior distributions for areal data is far from being solved. The

complex dependence induced by areal data and the combinatorial nature of the problem

make it difficult to derive exact properties. In this work we show that by empirical explo-

ration of these properties we can discover more about these distributions. More work needs

to be done to construct an auxiliary model extending the PPMx framework to areal data,

which displays the property of coherence across sample sizes and simultaneously has good

empirical properties.

When clustering data at multiple resolutions, the computational aspect is even more im-

portant, and different algorithms can be considered to improve convergence and mixing.

However, even the most efficient MCMC algorithm can be extremely slow for high dimen-

sional problems such as these when the number of units or when the levels of resolutions

increase. It is important to develop more efficient ways of analyzing multi-resolution data;

for example, by adapting Bayesian Additive Regression Trees (BART) we could develop a

model for multiple resolution data that can be computationally simpler.
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APPENDIX A

Spatial Modeling of Trends in Crime over Time

A.1. Maps of Data in Philadelphia

Figure 30 (left) gives a map outlining the 1336 block groups in Philadelphia. Figure 30

(right) shows population count for each block group in Philadelphia.
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Figure 30: Left: Map of Philadelphia divided into census tracts (red lines) and block
groups (black lines) by US Census Bureau. Right: Population count by block group in
Philadelphia. These maps were created with the R package ggmap (Kahle and Wickham,
2013).

In Figure 31 (left), we give the count of violent crimes per year in each block group, averaged

over the years 2006-2015. We see substantial heterogeneity across block groups in the

average counts of violent crimes per year. There are several outlying values: particular

block groups that have much higher average violent crime counts. The largest among these

is the Market East neighborhood in central Philadelphia.

These outlying neighborhoods motivate us to examine violent crime totals on the log scale.

In Figure 31 (right), we give the average of the logarithm of the count of violent crimes per
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Figure 31: Distribution of violent crime over the block groups of Philadelphia. Left: violent
crimes per block group, averaged over the years from 2006 to 2015. Right: logarithm of
violent crimes per block group, averaged over the years from 2006 to 2015. These maps
were created with the R package ggmap (Kahle and Wickham, 2013).

year in each block group, averaged over the years 2006-2015. We can see more details of the

spatial distribution of violent crime on the log scale. Modeling crime on the log scale has

the additional benefit that changes in log crime can be interpreted as percentage changes

in crime.

In both Figure 31 (left) and (right), we see evidence of spatial correlation in violent crime

totals between proximal block groups throughout the city.

A.2. Gibbs sampling

In section 2.3, we described the different models considered in this work; here we illustrate

the Gibbs sampling strategy to sample from their posterior distributions. We are mainly in-

terested in the coefficients γ for the predictors and in the collection of neighborhood-specific

coefficients (α,β). γ have a Normal prior distribution with mean zero and covariance ma-

trix proportional to the identity matrix. α and β also have Normal prior distributions with

mean zero, but have different covariance matrices depending on the model. In the global

shrinkage model, the covariance matrices are proportional to the identity matrix, while in
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the local shrinkage CAR model the covariance matrices depend on the Laplacian matrix of

the geography.

We denote with Y the N -dimensional vector (where N = nT ) found by concatenating

the yit’s, ordered by block group: Y = (y11, . . . , y1T , . . . , yn1, . . . , ynT ); moreover let θ =

(γ,α,β) represent the collection of the coefficients. Let the matrix X be designed so that

the covariates corresponding to block group i at time t are contained in row (i − 1)T + t

and by multiplying this row with the vector of parameters we get Xγ
(i−1)T+tθ =

∑
j γjzij +

αi + βit. With this notation, the conditional distribution of the data is given by Y|θ, σ2 ∼

N(Xθ, σ2I).

We can also combine the prior distributions of γ,α,β to get the distribution of θ: let

θ0 = (0, α01, β01) a (d+2n)-dimensional vector representing the conditional mean of θ and

let Ω0 = Σ−1
0 be the block matrix representing its precision matrix. Since p(γ) = N(0, τ2

γ ·I),

the first d × d diagonal block of Ω0 is equal to τ−2
γ I; the next two n × n diagonal blocks

instead are the precision matrices of α and β: τ−2
α Σ−1 and τ−2

β Σ−1, where Σ = I in the

global shrinkage model and Σ−1 = [ρ(DW −W) + (1− ρ)I] in the spatial CAR model; the

remaing blocks are zero matrices. Then p(θ|θ0, τ
2
α, τ

2
β) ∝ exp

(
−1

2(θ − θ0)TΩ0(θ − θ0)
)
.

Moreover, we set non-informative flat priors on α0, β0, and the variance hyper-parameters

σ2, τ2
γ , τ2

α and τ2
β have Inverse-Gamma priors, tuned in an Empirical Bayes fashion.

Posterior conditional distribution of θ With this notation, we can find the conditional

posterior distribution of θ as we would do in a usual linear regression:

θ|Y,θ0, σ
2, τ 2 ∼ N(θ̂,Vθ)

where

θ̂ =
(
Ω0 + XTX/σ2

)−1
(Ω0θ0 + XTY/σ2)

Vθ =
(
Ω0 + XTX/σ2

)−1
.
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Posterior conditional distribution of θ0 Similarly, the posterior distribution of the

mean hyper-parameters α0 and β0 can be found as

α0|α, τ2
α ∼ N

(
1TΣ−1

α α

1TΣ−1
α 1

,
τ2
α

1TΣ−1
α 1

)
β0|β, τ2

β ∼ N

(
1TΣ−1

β β

1TΣ−1
β 1

,
τ2
β

1TΣ−1
β 1

)
.

Posterior conditional distribution of σ2, τ2
γ , τ2

α and τ2
β For the variance hyper-

parameters σ2, τ2
γ , τ

2
α and τ2

β , the prior distributions are

σ2 ∼ Inv-Gamma(aσ, bσ)

τ2
α ∼ Inv-Gamma(aα, bα)

τ2
β ∼ Inv-Gamma(aβ, bβ)

τ2
γ ∼ Inv-Gamma(aγ , bγ).

where the hyper-parameters are tuned in an empirical Bayes fashion so that the prior mean

of the variance parameters is equal to the variance estimated from the model with no

shrinkage, and the prior variance is small. The conditional posterior distributions are also

Inverse-Gamma:

σ2|Y,θ ∼ Inv-Gamma

(
aσ +

N

2
, bσ +

1

2

n∑
i=1

T∑
t=1

(yit − zTi γ − αi − tβi)2

)

τ2
γ |Y,γ ∼ Inv-Gamma

aγ + d/2, bγ +
1

2

d∑
j=1

γ2
j


τ2
α|Y,α, α0 ∼ Inv-Gamma

(
aα +

n

2
, bα + (α− α01)TΣ−1

α (α− α01)/2
)

τ2
β |Y,β, β0 ∼ Inv-Gamma

(
aβ +

n

2
, bβ + (β − β01)TΣ−1

β (β − β01)/2
)
.

Posterior conditional distribution of ρ The prior distribution on ρ is Beta(10, 10),

and since its conditional posterior distribution does not have a closed form, we sample this
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parameter with a Metropolis Hasting procedure. Given its past value ρt−1 we propose a

new candidate ρ∗ with density g(ρ∗|ρt−1) = Beta(bρt−1/(1− ρt−1), b); this parametrization

allows the mean to be ρt−1 and the variance to be small when we choose b = 10. The

acceptance probability is then

a = 1 ∧ p(ρ∗|e.e.)
p(ρt−1|e.e.)

g(ρt−1|ρ∗)
g(ρ∗|ρt−1)

where the posterior conditional distribution p(ρ|e.e.) is proportional to the product of the

prior distribution of (α,β) given ρ and the prior of ρ. We use the notation e.e. to denote

“everything else”, i.e. the current values of all other parameters in the model.

Posterior conditional distribution of W Finally, in model (2.13)-(2.14) we allow the

adjacency matrix itself to be random. We consider all the pairs of regions that share a

border (wij = 1) and we allow those borders to potentially become barriers (wij = 0). We

model these variable weights as wαij |φα ∼ Bern(φα) and independently, wβij |φβ ∼ Bern(φβ),

with φα, φβ
iid∼ Beta(1, 9).

With these prior distributions, the conditional posterior distribution for Wα is

p(Wα|e.e.) ∝ p(α|α0, τ
2
α, ρ,W

α)p(Wα|φα)

∝ det(Σ−1
α )1/2 exp

(
− 1

2τ2
α

(α− α01)TΣ−1
α (α− α01)

)
p(Wα|φα)

∝ det(Σ−1
α )1/2 exp

(
− ρ

2τ2
α

(α− α01)T (DWα −Wα)(α− α01)

)
p(Wα|φα).

Note that, because of the determinant term, the entries of Wα are not independent a

posteriori. Thus we sample each entry wαij = wαji conditional on the rest of the matrix Wα
−ij

as p(wαij = 1|e.e.) = q, where

q

1− q
=

√√√√det(Σ−1
α (wαij = 1))

det(Σ−1
α (wαij = 0))

exp

(
− ρ

2τ2
α

(αi − αj)2

)
φα

1− φα
.

136



A highly similar procedure (with the obvious substitutions) is used to sample the entries of

Wβ.

Posterior conditional distribution of φ To express the prior information that only

a small percentage of the borders should be turned into barrier, the prior distribution of

φα and φβ is Beta(1, 9). Since the wαij and wβij are Bernoulli distributed, the posterior

distributions for φα and φβ are

φα|Wα ∼ Beta

1 +
∑

(i,j)∈I

wαij , 9 +
∑

(i,j)∈I

(1− wαij)


φβ|Wβ ∼ Beta

1 +
∑

(i,j)∈I

wβij , 9 +
∑

(i,j)∈I

(1− wβij)

 .

A.3. MCMC Implementation Details

The results reported in Table 1 for the hierarchical models have been implemented using

Gibbs sampling. In particular, for each model 1000 samples where used, after discarding a

burn-in period of 50 iterations and thinning every 2 samples. By running multiple chains and

superimposing their trace plots, we noted that the convergence happened after a relatively

short time and that samples were not highly correlated.

A.4. Prior Robustness for Variance Hyperparameters

In Section 2.3, we used priors for the variance parameters with hyper-parameters that were

tuned in an Empirical Bayes fashion. In this section, we show that highly similar results are

obtained when using more non-informative prior distributions on these variance parameters.
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In particular, we consider a uniform prior on γ, log σ, τα and τβ, which is equivalent to:

p(γ) ∝ 1

p(σ2) ∝ σ−2

p(τ2
α) ∝ τ−1

α

p(τ2
β) ∝ τ−1

β .

Table 6 is equivalent to Table 1 but with results from the estimated models that use the

non-informative priors given above. Only the global, spatial CAR and variable border model

results are reported since priors are not involved in the no-shrinkage model (2.5).

Model MSEin MSEout MSEcv Moran’s I

Separate αi , βi Models
Global Shrinkage 0.0698 0.1080 0.0927 0.17
Spatial CAR 0.0701 0.1052 0.0922 0.61
Variable Borders 0.0706 0.1069 0.0927 0.48

Table 6: Comparison of predictive accuracy between the different models outlined in Sec-
tion 2.3 with non-informative priors on the hyper parameters. The mean squared error for
both in-sample and out-of-sample predictions are provided. We also provide the Moran’s I
measure of spatial correlation calculated on the estimated time trends βi from each model.

Examining Table 6, we see almost the exact same predictive results as the predictive results

given in Table 1. There are very slight numerical differences in the Spatial CAR in-sample

error, the Global Shrinkage out-of-sample error and the Variable Borders Moran’s I, but

these differences could easily be attributed to MCMC sampling variability.

A.5. Additional Model Results

In Section A.5.1 we report the numerical estimates of the partial effects, which are shown

in Figure 2. In Section A.5.2 we describe the results from a model with variable borders

for αi but fixed borders for βi. In section A.5.3 we provide different visualizations of the

variability in the estimated neighborhood-specific coefficients αi and βi.
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A.5.1. Numerical results for partial effects

In table 7 we report the numerical values corresponding to the partial effects shown in

Figure 2. For each model with neighborhood-specific coefficients outlined in Section 2.3,

we report maximum likelihood estimates, standard errors, posterior means and posterior

standard deviations.

No shrinkage Global shrinkage Spatial CAR Variable borders

Estimate St.Error Mean SD Mean SD Mean SD

log.income -0.186 0.009 -0.186 0.022 -0.113 0.023 -0.099 0.021
sqrt.poverty 0.182 0.009 0.182 0.023 0.095 0.020 0.110 0.018
segregation 0.010 0.005 0.010 0.013 -0.023 0.017 -0.013 0.017
sqrt.vacantprop 0.116 0.006 0.115 0.014 0.052 0.015 0.045 0.014
sqrt.comresprop 0.227 0.005 0.223 0.013 0.241 0.011 0.240 0.011
pop.total 0.216 0.005 0.212 0.013 0.263 0.011 0.317 0.012

Table 7: Estimate and standard error for each coefficient γj . For the Bayesian models,
we report the mean and the standard deviation from 1000 independent draws from the
posterior distribution.

A.5.2. Random borders for only α

Given the smaller number of barriers detected for the βi’s compared to the αi’s in Figure 5,

we also implemented an alternative model where the adjacency structure Wβ for the βi’s

is considered fixed, and only the adjacency matrix Wα for the αi’s is allowed to vary.

The in-sample MSE of 0.0711 for the model with variable Wα and fixed Wβ is worse then

the in-sample MSE of 0.0706 for the model with variable Wβ and Wα. However, the

variable Wα and fixed Wβ model does have a slightly better out-of-sample MSE of 0.1050

compared to the out-of-sample MSE of 0.1069 for the model with variable Wβ and Wα.

These results provide a further indication that there is stronger signal in the data for

detecting discontinuities for the mean level of crime between neighborhoods compared to

discontinuities for the trend in crime over time between neighborhoods. However, we still

report the results for the model with variable Wα and Wβ in Section 2.4, as it provides

additional insight and interpretation in Figure 4.
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A.5.3. Variability of neighborhood-specific coefficients

In Section 2.5.4, we report the neighborhoods with the highest and lowest estimates of the

mean level of crime αi and time trend βi. As a supplement to these results, in Figure 32 we

map the Philadelphia neighborhoods which are “significant”, in the sense that their 95%

credible intervals do not contain the global mean ᾱ or β̄ across all neighborhoods in the

city.

In Figure 32, we see many more neighborhoods with significant differences in terms of their

αi’s, which is another indication that the variation in the mean level of crime is larger than

the variation in the time trend in crime (βi’s). In the plot for βi’s, we find a smaller number

of neighborhoods with values that are significantly different than the overall mean, but the

existence of these neighborhoods confirms the presence of the space-time interaction found

in previous studies (Law et al., 2014; Li et al., 2014).

In Figure 33, we visualize the width of the 95% credible intervals for each neighborhood-

specific αi and βi. It is interesting to observe that the interval widths are smallest for areal

units that border many other units and largest for areal units with very few neighbors. The

neighborhoods with smallest widths are the parks (Fairmount, Wissahickon and Pennipack)

which are surrounded by many block groups due to their large surface area. The neighbor-

hoods with largest widths are at the border of the city with only one or two neighboring

units. This phenomenon is more striking for the trends in crime over time (βi’s) for which

there is a less strong signal in the data compared to the mean level of crime (αi’s) for each

neighborhood.
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Figure 32: Top: The neighborhoods where the 95% credible interval for αi does not contain
the global mean level of crime. Bottom: The neighborhoods where the 95% credible
interval for βi oes not contain the global time trend in crime. These maps were created
with the R package ggmap (Kahle and Wickham, 2013).
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Figure 33: Top: The width of the 95% credible intervals for αi. Bottom: The width of the
95% credible intervals for βi. These maps were created with the R package ggmap (Kahle
and Wickham, 2013).
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APPENDIX B

Bayesian Clustering with Particle Optimization

B.1. Proof of Proposition 1

In this Section 3.1 we state that we can find the set of L particles with largest posterior

by finding a variational approximation of the tempered posterior Πλ. Here we restate

Proposition 1 and provide the proof.

Remember that we denote with ΓL = {γ(1), . . . ,γ(L)} the set of L particles with largest

posterior mass, with q(· | Γ,w) the discrete distribution that places probability w` on the

particle γ` and with QL the collection of all such distributions supported on at most L

particles. Moreover, for each λ > 0, let πλ be the mass function of the tempered marginal

posterior Πλ, where πλ(γ) ∝ π(γ | y)
1
λ .

Proposition 2. Suppose that π(γ | y) is supported on at least L distinct particles and that

πλ(γ) 6= πλ(γ ′) for γ 6= γ ′. Let q?λ(·|Γ?(λ),w?(λ)) be the distribution in QL that is closest

to Πλ in a Kullback-Leibler sense:

q?λ = arg min
q∈QL

{∑
γ

q(γ) log
q(γ)

πλ(γ)

}
.

Then Γ?(λ) = ΓL and for each ` = 1, . . . , L, w?` (λ) ∝ π(γ(`)|y)
1
λ

Proof. Denote the optimal particles Γ?(λ) = {γ?1, . . . ,γ?L?} . Straightforward calculus veri-

fies that w?` (λ) ∝ πλ(γ?` ). We thus compute

KL(q? ‖ πλ) =
∑
γ

q?(γ) log
q?(γ)

πλ(λ)
= − log Πλ(Γ?(`))

Since Πλ is supported on at least Lmodels, we see from this computation that if Γ? contained
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fewer than L particles, we could achieve a lower Kullback-Leibler divergence by adding

another particle γ̃ not currently in Γ? that has positive Πλ-probability to the particle set

and updating the importance weights w accordingly.

Now if Γ? contains L models but Γ?(λ) 6= ΓL, we know Πλ(Γ?(λ)) < Πλ(ΓL). Thus, replacing

Γ?(λ) by ΓL and adjusting the importances weights accordingly would also result in a lower

Kullback-Liebler divergence.

B.2. Various hyper-parameter choices

The main model described in Section 2 depends on several hyper-parameters, which need

to be fixed by the practitioner: the parameters for the prior for σ (νσ and λσ) and the

multiplicative constants to specify within and between cluster variance (a1, a2, b1 and b2).

We will now describe the heuristic used to specify such values.

Let us consider each neighborhood separately and fit a simple linear regression model in each

one: let α̂i and β̂i be the least square estimates and σ̂2
i be the estimated residual variance for

neighborhood i. Since these estimates do not incorporate any prior information or sharing of

information, we can think of them as an approximation of αi, βi given the partition with N

clusters γN ; in fact under such configuration the coefficients are exchangeable and the only

shrinkage induced is through the common variance parameter. Given this, one heuristic

desideratum is that the marginal prior on α | γ = γN should assign substantial probability

to range of the α̂i. Specifically, we will make sure that this conditional prior places 95% of

its probability over the range of the α̂i’s. Since α | γ = γN ∼ N(0, σ2(a1/(1− ρ) + a2)In),

we constrain a1 and a2 so that

a1

1− ρ
+ a2 =

maxi |α̂i|2

4σ̂2
.

In order to determine each of a1 and a2, we need a second constraint. To this end, consider
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the highly stylized setting in which we have K overlapping clusters with equal variance σ2
cl

whose means are equally spaced at distance 2σcl. The idea of this second heuristic is to

match such a stylized description to the observe distribution of α̂i. In essence, this involves

covering the range of α̂i with K + 1 “chunks” of length 2σcl. While the exact value of σcl

is unknown, we have found it useful to approximate it a1σ
2/(1 − ρ). This approximation

tends to produce smaller values of a1, which in turn encourages a relatively small number

of clusters.

With these two constraints we find:

a1 =
(max(α̂i)−min(α̂i))

2

4(K + 1)2σ̂2/(1− ρ)

a2 =
maxi |α̂i|2

4σ̂2
− a1

1− ρ
.

Similarly for the β̂i’s we find:

b1 =
(max(β̂i)−min(β̂i))

2

4(K + 1)2σ̂2/(1− ρ)

b2 =
maxi |β̂i|2

4σ̂2
− b1

1− ρ
.

In order to operationalize these heuristics, we must specify an initial guess at K. We have

found in our experiments, setting K = blogNc works quite well. It, moreover, accords with

the general behavior of the Ewens-Pitman prior.

Finally, to specify the prior for σ2 we can use the collection of σ̂2
i ’s: by matching mean and

variance, we can recover νσ = 2m
2

v +4 and λσ = m(1− 2
νσ

), where m and v are the empirical

mean and variance of the σ̂2
i ’s.
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B.3. Additional Synthetic Data Evaluation

In Section 4, we generated several synthetic datasets based on a 20 grid of census tracts

partitioned into four clusters of size 12, 188, 100, and 100, as seen in Figure 9. Within

each cluster, we drew the αi’s from a CAR model centered at a specified cluster mean with

ρ = 0.95 and variance scale 0.2. Across the different specifications of cluster means, we

always fixed the cluster mean of the 12-tract “cross” and the 100 tract square in the upper

right corner to be zero. We then fixed the mean of the 188-tract cluster on the left hand

side to be −∆ and the mean of the 100-tract cluster in the lower right corner to be ∆.

We generated datasets for each of ∆ = 0, 1, . . . , 5. The high, medium, and low separation

settings in Figure 3 and 4 correspond to ∆ = 5, 3, and 1, respectively.

In Section 3.4, we compared the partition selection performance of our method to that of k-

means and spectral clustering. Figure 34 shows the estimated partitions from k-means and

spectral clustering on the same dataset used to generate Figure 4. Across these datasets, the

optimal number of clusters for k-means was always three, according to the “elbow method.”

However, because k-means does not implicitly account for our spatial connectedness con-

straints, we post-processed the recovered partition by treating disconnected parts of clusters

identified by k-means as their own separate clusters.

Figure 34: Partitions recovered by k-means and spectral clustering for three different cluster
separation settings. The color of each tract corresponds to the estimated parameter value
E[αi | y,γ].
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B.4. Additional Results for Clustering in Philadelphia

In figure 35 we represent the best three particles recovered by the models where the priors

are specified as Ewens-Pitman prior with η = 5 for γ(α) and Uniform on SP for γ(β) (top

panel) and Uniform prior on SP for γ(β) and Ewens-Pitman prior with η = 5 for γ(α)

(bottom panel).

B.5. Derivation of Closed Form Expressions

B.5.1. One Partition Derivations

In Section 4, we considered a simpler model, in which we ignored the time trend and only

focused on clustering the intercepts. That model was:

γ = {S1, . . . , SK} ∼ Pγ

σ2 ∼ Inv. Gamma

(
νσ
2
,
νσλσ

2

)
αk|σ2 ∼ N(0, a2σ

2) for each k = 1, . . . ,K

αSk |αk, σ
2 ∼ Nnk(α1nk , a1σ

2Σ
(α)
k ) for each k = 1, . . . ,K

yi,t|αi, σ2 ∼ N(αi, σ
2) for each i = 1, . . . , N, and t = 1, . . . , T

For the sake of completeness, we derive the corresponding marginal likelihood p(y | γ) and

conditional expectation E[α | γ,y] for this simpler setting.

Now observe

p(y|α, σ2,γ) ∝
K∏
k=1

∏
i∈Sk

(
σ2
)−T

2 exp

{
−T (yi − αi)2 + (T − 1)s2

i

2σ2

}

∝
(
σ2
)−N(T−1)

2 exp

{
−

(T − 1)
∑N

i=1 s
2
i

2σ2

}
K∏
k=1

p(ySk |αSk , σ
2,γ)
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Figure 35: Colored plots: Top three models identified by our procedure. The thick borders represent
the partition, and the color represents the posterior mean of the parameters α and β. Black and
white plots: transition from the model on the left to the model on the right. The greyed areas
represent the neighborhoods whose cluster assignments change in the partitions on the sides. Top:
Ewens-Pitman prior with η = 5 for γ(α) and Uniform on SP for γ(β). Bottom: Uniform prior on
SP for γ(β) and Ewens-Pitman prior with η = 5 for γ(α).
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where ySk |αSk , σ
2,γ ∼ Nnk(αSk , T

−1σ2Ink). From here, we conclude

p(y|σ2,γ) ∝
(
σ2
)−N(T−1)

2 exp

{
−

(T − 1)
∑N

i=1 s
2
i

2σ2

}
K∏
k=1

p(ySk |σ
2,γ)

To derive p(ySk |σ
2,γ), we first note that marginally

αSk |σ
2 ∼ Nnk(0 · 1nk , σ

2[a1Σ
(α)
k + a21nk1

>
nk

]).

Now marginalizing out αSk we have

ySk |σ
2,γ ∼ Nnk

(
01nk , σ

2
[
a1Σ

(α)
k + a21nk1

>
nk

+ T−1Ink

])

Hence

p(y|σ2,γ) ∝
(
σ2
)−N(T−1)

2 exp

{
−

(T − 1)
∑N

i=1 s
2
i

2σ2

}

×
K∏
k=1

(
σ2
)−nk

2 |Ω(y)
k |

1
2 exp

{
− 1

2σ2

K∑
k=1

y>k Ω
(y)
k yk

}

where Ω
(y)
k = [a1Σ

(α)
k + a21nk1

>
nk

+ T−1Ink ]−1.

Marginalizing out σ2, we conclude

p(y|γ) = C(N, νσ, λσ)×

(
K∏
k=1

|Ω(y)
k |

) 1
2

×

[
νσλσ

2
+

1

2

K∑
k=1

y>k Ω
(α)
k yk +

(T − 1)

2

N∑
i=1

s2
i

]− νσ+NT
2

We further compute

p(ySk ,αSk |σ
2,γ) ∝ exp

{
− 1

2σ2

[
α>SkV

−1αSk − 2α>SkTySk

]}
,
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where V −1 =

[
TInk +

(
a1Σ

(α)
k + a21nk1

>
nk

)−1
]
. From here, we immediate conclude that

E[αSk |ySk ,γ] = T × V ySk .

Finally, note that

p(αk,αSk ,ySk |σ
2,γ) ∝ exp

{
− 1

2σ2

[
(y −αSk)> T (y −αSk)>

]}
× exp

{
− 1

2σ2

[
(αSk − αk1nk)> a−1

1 Ω
(α)
k (αSk − αk1nk)

]}
× exp

{
− 1

2σ2
α2
ka
−1
2

}

Therefore,

p(αk|αSk ,y, σ
2,γ) ∝ exp

{
− 1

2σ2

[
α2
k

(
a−1

2 + a−1
1 1>nkΩ

(α)
k 1nk

)
− 2αka

−1
1 1>nkΩ

(α)
k αSk

]}

By the Woodbury identity, we compute

[
a1Σ

(α)
k + a21nk1

>
nk

]−1
= a−1

1 Ω
(α)
k − a

−1
1 Ω

(α)
k 1nk

[
a−1

2 + a−1
1 1>nkΩ

(α)
k 1nk

]−1
1>nkΩ

(α)
k a−1

1

= a−1
1 Ω

(α)
k − a

−2
1 (1− ρ)2 ×

[
a−1

2 + a−1
1 (1− ρ)nk

]−1 × 1nk1
>
nk

So the posterior conditional mean of αk is given by

E[αk|αSk ,ySk ,γ] =
a−1

1 1>Ω
(α)
k αSk

a−1
2 + a−1

1 1>nkΩ
(α)
k 1>nk

=
a−1

1 (1− ρ)1>nkαSk

a−1
2 + a−1

1 nk(1− ρ)

Note: observe that as a2 → ∞ (i.e. as we allow the variability of the cluster means to

increase), this conditional expectation converges to the n−1
k 1>αSk , the arithmetic mean of

the parameters within each block-group.
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B.5.2. Two Partition Derivations

Recall from Section 3.2 that our full mode is:

γ(α), γ(β) ∼ EP(η;SP)

σ2 ∼ IG

(
νσ
2
,
νσλσ

2

)
(αk)k

iid∼ N(0, a2σ
2)

(βk′)k′
iid∼ N(0, b2σ

2)

(αk)k
ind∼ CAR(αk, a1σ

2,W
(α)
k )

(βk′)k′
ind∼ CAR(βk′ , b1σ

2,W
(β)
k′ )

(yi,t)i,t
ind∼ N(αi + βi(t− t), σ2)

We exploit the conditional conjugacy present in this model in several places. First, we

have closed form expressions for the conditional posterior means E[α | y,γ] and E[β |

y,γ], which we use in our particle optimization procedure to propose new transitions.

Second, we can compute the marginal likelihood p(y | γ) in closed form, which we use

to evaluate the optimization objective and pick between multiple transitions. Below, we

carefully derive these closed form expressions, noting that in several places, we can avoid

potentially expensive matrix inversions. In particular, the choice to center the time variable,

thereby ensuring an orthogonal design matrix within each neighborhood, facilitates rapid

likelihood evaluations.

Distribution of αk Let us first consider the vector of parameters αk in cluster S
(α)
k

given σ2: by marginalizing the distribution of the grand cluster mean αk, we find that

its distribution is a multivariate normal with covariance matrix σ2Σ
(α)
k , where Σ

(α)
k =

a1Σ
(α)
k,CAR + a211> = a1

[
ρ(W

(α)
k )∗ + (1− ρ)I

]−1
+ a211>. Note that its precision matrix
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can be computed using Woodbury’s formula without having to invert any matrix:

(Σ
(α)
k )−1 = a−1

1 Ω
(α)
k,CAR − a

−1
1 Ω

(α)
k,CAR1

(
a−1

1 1>Ω
(α)
k,CAR1 + a−1

2

)−1
1>a−1

1 Ω
(α)
k,CAR =

= a−1
1 Ω

(α)
k,CAR −

a−2
1 (1− ρ)2

a−1
1 nk(1− ρ) + a−1

2

11>

where Ω
(α)
k,CAR =

(
Σ

(α)
k,CAR

)−1
= ρ(W

(α)
k )∗ + (1 − ρ)I; the second line follows from noticing

that 1 is both a left and right eigenvector of Ω
(α)
k,CAR with eigenvalue 1 − ρ. Similarly this

holds for the distribution of βk′ .

Distribution of α Next, we can write the distribution of the whole vector α given σ2

and γ(α): by combining the distributions of the cluster specific parameters αk’s, and using

the independence between different clusters, we find that the distrubution of α given σ2 and

γ(α) is a multivariate normal with mean zero and covariance matrix that can be found by

combining the Σ
(α)
k ’s. Because of the independence between clusters, there exists an ordering

of the indices of α so that the covariance matrix of α|γα, σ2 has a block-diagonal structure.

We denote such permutation of the indices with π(α), and it can be constructed by mapping

the first n1 elements to the indices in the first cluster ({π(α)(1), . . . , π(α)(n1)} = S
(α)
1 ), the

following n2 elements to the indices in the second cluster ({π(α)(n1+1), . . . , π(α)(n1+n2)} =

S
(α)
2 ), and so on. With such ordering, the kth diagonal block of the covariance matrix is

σ2Σ
(α)
k . Similarly, we can find a (potentially different) permutation π(β) for β and derive

the distribution of βπ|σ2, γ(β).

Notation To describe the distributions of interest we can represent our model in the form

of a unique linear model, by combining all the observations in a vector Y , combining the

reodered coefficients in a unique vector θ = (απ,βπ) and appropriately constructing the

covariate matrix X. In the next paragraphs we will provide with the details on how we

constructed such vectors and matrix.

To build the column vector Y we stack the vectors yi with i = 1, . . . , N : Y is a vector
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of length N · T and each block of T rows corresponds to a particular neighborhood; in

particular, the ((i− 1)T + t)th entry of Y corresponds to yi,t.

The vector of coefficients θ is found by concatenating the reordered απ and βπ: for i =

1, . . . , N , elements θi = απ(α)(i) and θN+i = βπ(β)(i).

The matrix of covariates X then has dimensions NT × 2N ; each block of T rows corre-

sponds to a neighborhood and each column corresponds to an element of θ: the first N

columns correspond to the elements of απ and the second N columns to βπ. The rows of X

corresponding to neighborhood i (rows (i− 1)T + t with t = 1, . . . T ) have an element equal

to 1 in the (π(α))−1(i)th column, an element equal to xit = t− t in the (N + (π(β))−1(i))th

column, and zero elsewhere. With such construction, the (i − 1)T + t row of the equation

Y = Xθ corresponds to yi,t = θ(π(α))−1(i) + xitθN+(π(β))−1(i) = αi + (t− t)βi.

Marginal likelihood Y |γ(α), γ(β) To recover the marginal likelihood p(Y |γ(α), γ(β)) we

compute

∫ [∫
p(Y |α,β, σ2)p(α|γ(α), σ2)p(β|γ(β), σ2)dαdβ

]
p(σ2)dσ2 =

=

∫ [∫
p(Y |απ,βπ, σ

2)p(απ|γ(α), σ2)p(βπ|γ(β), σ2)dαπdβπ

]
p(σ2)dσ2 =

=

∫ [∫
p(Y |θ, σ2)p(θ|γ(α), γ(β), σ2)dθ

]
p(σ2)dσ2.

Let us first compute p(Y |σ2, γ(α), γ(β)) =
∫
p(Y |θ, σ2)p(θ|γ(α), γ(β), σ2)dθ. Using the no-

tation for linear regression we can write p(Y |θ, σ2) = N(Xθ, σ2I). The prior for θ is a

normal distribution with mean zero and block covariance matrix Σθ: the first n × n block

corresponds to the covariance matrix of α and the second to the one for β.

By integrating out θ, p(Y |γ(α), γ(β), σ2) = N
(
0, σ2ΣY

)
where ΣY = I + XΣθX

>. Its

precision matrix can be computed using Woodbury’s formula again: Σ−1
Y = I − X(Σ−1

θ +

X>X)−1X>. Note that X>X is a diagonal matrix, and we derive its form at the end of

this chapter.
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The marginal likelihood can now be derived by integrating out σ2:

p(Y |γ(α), γ(β)) =

∫
p(Y |σ2, γ(α), γ(β))p(σ2)dσ2 =

= π−nT/2det(ΣY )−1/2 (νσλσ/2)νσ/2

Γ(νσ2 )

∫
(σ2)−

NT+νσ
2
−1e−

Y>Σ−1
Y

Y+νσλσ

2σ2 dσ2 =

= π−nT/2det(ΣY )−1/2 Γ(NT+νσ
2 )

Γ(νσ2 )

(
νσλσ

2

)νσ/2(νσλσ + Y >Σ−1
Y Y

2

)−(NT+νσ)/2

=

= π−nT/2det(ΣY )−1/2 Γ(NT+νσ
2 )

Γ(νσ2 )

(
νσλσ

2

)−NT/2(
1 +

Y >Σ−1
Y Y

νσλσ

)−(NT+νσ)/2

.

Note that if λσ = 1, this is multivariate t-distribution with νσ degrees of freedom.

For this we need to compute the quadratic form

Y >Σ−1
Y Y = Y >Y − Y >X(Σ−1

θ +X>X)−1X>Y.

Because of the block diagonal structure of Σ−1
θ +X>X we can write this as a sum over the

clusters of the two partitions. Consider the column vector X>Y of length 2N : the first N

elements correspond to the summary statistics related to the απ(i)’s and we will denote the

ones corresponding to cluster S
(α)
k with (X>Y )

(α)
k , while the second N elements are for the

βi’s and we denote with (X>Y )
(β)
k′ the ones for cluster S

(β)
k′ . Now we can write

Y >X(Σ−1
θ +X>X)−1X>Y =

K(α)∑
k=1

(X>Y )
(α)>
k ((Σ

(α)
k )−1 + T I)−1(X>Y )

(α)
k

+

K(β)∑
k′=1

(X>Y )
(β)>
k′ ((Σ

(β)
k′ )−1 +

∑
x2
t I)−1(X>Y )

(β)
k′

where (Σ
(α)
k )−1 + T I is the diagonal blocks of Σ−1

θ + X>X corresponding to cluster S
(α)
k

and (Σ
(β)
k′ )−1 +

∑
x2
t I corresponds to S

(β)
k′ ; each of them can be inverted using methods for

symmetric positive definite matrices.

To compute the marginal likelihood we are left we calculating the determinant of ΣY , where
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we can use the reciprocal of the determinant of its inverse

det(Σ−1
Y ) = det(I−X(Σ−1

θ +X>X)−1X>) = det(I− (Σ−1
θ +X>X)−1X>X)

where the last equality is given by Sylvester’s formula, and allows us to compute the deter-

minant of a smaller dimensional matrix. Moreover, because of its block diagonal structure,

we can compute the determinant block-wise.

Posterior mean of α,β The calculations for the posterior mean of α,β are very similar:

using the same notation and the results for linear regression, we can find

E
[
θ|Y, γ(α), γ(β), σ−1

]
=
(
X>X + Σ−1

θ

)−1
X>Y

and since this does not depend on σ2, it coincides with E
[
θ|Y, γ(α), γ(β)

]
. Because of the

block diagonal structure of the matrices involved, we can compute the estimate of the

parameter for each cluster independently. Moreover, note that the inverse of X>X+Σ−1
θ is

computed in the likelihood calculation, so it can be stored and does not need to be computed

two times.

Derivation of X>X Since in our formulation the covariates are orthogonal, i.e.
∑T

t=1 xit =

0 for all i, X>X is a diagonal matrix. Note that column X(π(α))−1(i′) contains T 1’s in rows

t+ (i′− 1)×T and zeros elsewhere; similarly column XN+(π(β))−1(i′) contains elements (xi′t)

in rows t+ (i′− 1)×T and zero’s elsewhere. Thus, when we compute (X>X)ij we consider

the cross product of columns Xi and Xj . Depending on the value of i and j, we have the

following cases:

• if i = j ≤ N , then (X>X)ij = T ,

• if i = j ≥ N , then (X>X)ij =
∑

t x
2
π(β)(j−N),t

,

• if i ≤ N and j = N + i, then (X>X)ij =
∑

t xπ(β)(i),t = 0,
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• if j ≤ N and i = N + j, then (X>X)ij =
∑

t xπ(β)(j),t = 0,

• for any other i, j, (X>X)ij = 0.

Thus the matrix X>X is a diagonal matrix: the first n × n diagonal block is T I, and

the second diagonal block is a diagonal matrix whose entries are
∑T

t=1 x
2
it; when we have

fixed design, xit = xt = t − t, then
∑T

t=1 x
2
it =

∑T
t=1(t − t)2 is constant, so the second

diagonal block is
∑
x2
itI. Because of the orthogonality of the covariates, the upper-right

and lower-left blocks are zero matrices, since
∑T

t=1 xit = 0.

Note on cluster-wise update of calculations. In our greedy search when we perform

a move only one or two clusters in only one partition is changed: in a split move for γ(·), a

cluster is divided into two sub-clusters, and the original cluster replaced by the first, while

the second creates an additional cluster; in a merge move, one of two clusters is deleted

and the other is replaced to the merge of the two original clusters. In each case, we need

to update the value of the marginal likelihood, of the prior for γ(·) and of the estimate of

the parameters.

Because of the block structure given by orthogonality of covariates and by the reordering

of the parameters, changing the structure of some clusters does not affect the parameter

estimates for other clusters that are not involved in the move. This implies that updates

for updates to S
(α)
k do not affect the parameter estimates αh for h 6= k or βk′ for any

k′. Similarly, since the quadratic form Y >Σ−1
Y Y can be written as sum of cluster-specific

quadratic forms, we can update only the quadratic form of the clusters affected and we can

compute the determinant of the blocks of ΣY corresponding to the modified clusters.

This allows us to invert matrices that scale like the size of the clusters, reducing the com-

putational costs dramatically.
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APPENDIX C

Prior Choice for Clustering Areal Data

C.1. Hyper-parameter choice

Both the Areal-PPMx and the PPMx-SBM require the choice of the hyper-parameters for

the prior distribution of the auxiliary model. In this section we describe the heuristics to

choose them.

Stochastic block model When the auxiliary model is the Stochastic Block Model, we

assume that within-cluster and between-cluster edges are i.i.d. bernoulli distributed respec-

tively with probability ξ1 and ξ0. The prior for ξ1 is Beta(a, b) and for ξ0 is Beta(c, d). While

we don’t want these priors to be excessively informative, we would like to include in this

model some prior information: firstly, we want to include the idea that xi1 > ξ0; secondly,

assuming that the cohesion function is coupled with the DP distribution, we can use some

properties of the DP distribution such as the average number of clusters to estimate the

prior proportion of within-cluster and between-cluster connections.

To specify the prior for ξ1 we can consider the prior number of successes (within-cluster

connections) and of failures (within-cluster non-connections). Under the DP distribution the

(asymptotic) average number of clusters is α log(n), thus we can approximate the average

size of a cluster with s(n) = n
α log(n) . Moreover we can consider the average degree, i.e. the

average number of edges for each node, d(n) =
∑
ij wij
n . We can express the prior number of

successes as the average cluster size times the average degree, divided by 2, since we don’t

want to count edges twice

a = s(n)d(n)/2.

As for the number of failures, i.e. the number of non-connections within a cluster, we can

consider that, if a unit has d(n) connections with other units in the same cluster, then it
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has s(n) − 1 − d(n) non-connections with units in the same cluster, on average. Thus we

can estimate

b = s(n)(s(n)− 1− d(n))/2.

The choice for the prior of ξ0 is instead harder. In fact, it requires knowledge of the borders

between clusters, which cannot be easily deduced. With a strong assumption we consider

a square grid, with squared clusters. Then the border between two squares is the length of

its side, which can be computed as
√

(n/ log(n)). Assuming that units on the border only

have one connection to some other unit in another cluster we can estimate

c =
√
n/ log(n)

As for the prior number of failures (the number of between-cluster non-connections) we can

use an over-estimate by just considering all the possible pair of units:

d = n(n− 1)/2.

Note on coherence If the hyper-parameters for the auxiliary model depend on n, the

property of coherence over sample sizes is no longer satisfied or meaningful. In the heuristic

described we considered the case in which the number of units is fixed.

Areal-PPMx When we use the Beta-Binomial to model the number of within-cluster

connections vs the total number of connections, we need to specify the prior for the prob-

ability that an edge is within-cluster (rather than between-cluster). The probability ξ is

modeled as Beta(a, b), and we need to choose the hyper-parameters. The prior number of

successes a can be specified as the average cluster size times the average degree, divided by

2, as for a in the SBM auxiliary model.

a = s(n)d(n)/2.
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Figure 36: Distribution of the properties (a)-(e) on a 5 by 5 grid.

The prior number of failures b instead can be thought as the prior number of between-cluster

connections which corresponds to the parameter c in the SBM:

b =
√
n/ log(n).

C.2. Additional prior analyses

In Figure 36 we report the graphs describing the properties (a.)-(e.) of the distributions

considered for the 5 by 5 grid graph, estimated using importance sampling with a sample

size of 108.
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APPENDIX D

Clustering Data at Multiple Resolutions

D.1. Algorithm for posterior sampling

D.1.1. Split-merge for HDP

In this section we are going to present a posterior sampling algorithm for the Hierarchical

Dirichlet Process. We use the Chinese restaurant franchise representation, described by

Teh et al. (2006). Instead of using the Gibbs sampling algorithm described by Teh et al.

(2006), we propose a Split-Merge algorithm for the HDP, extending the work of Jain and

Neal (2004b). In the Chinese Restaurant Franchise representation of the HDP, the partition

is described by a partition of costumers into tables within each restaurant and a partition

of tables into dishes across restaurants. Let tji be the table assigned to costumer i in

restaurant j, with tj = (tji : ∀i) being the partition of costumers into tables in restaurant

j, t = (tji : ∀j, i) and t−j = (tj′i : ∀i, j′ 6= j); moreover let kjt be the dish assigned to table t

in restaurant j, and k = (kjt : ∀j, t) be the partition of tables across restaurants into dishes.

Remember that we can write the likelihood as

p(y|t,k) =
∏
k

∫ ∏
j,i:kjtji=k

p(yji|φk)dφk

and that the prior p(k, t) = p(k|t)
∏
j p(tj), where p(k|t) and p(tj) are Ewens-Pitman prior

distributions for partitions.

Moreover remember that for every Metropolis-Hasting proposal γ̃, we need to compute the

acceptance probability A(γ̃; γ) to move from partition γ to γ̃: A(γ̃; γ) = 1 ∧ a(γ̃; γ), where

a(γ̃; γ) = π(γ̃)q(γ;γ̃)
π(γ)q(γ̃;γ) , q(γ̃; γ) the probability of proposing γ̃ from γ and π is the posterior

distribution.

160



Sampling t We iteratively sample the partitions tj for all j, given k and t−j . Two

costumers i1 and i2 in restaurant j are randomly picked and if they belong to the same

cluster (tji1 = tji2) a split move is performed, otherwise a merge move is implemented.

• Split When a split move is performed, we need to sample the new table assignment

of the elements in the same cluster as i1 and i2. This is done similarly as Jain and

Neal (2004b)’s restricted Gibbs sampling proposal. Moreover, since a new table tnew

is created, a new dish kjtnew is sampled (uniformly among the existing dishes and a

new dish ). Note that this affects the partition of tables into dishes, so it needs to

be taken into account in the likelihood. Let t̃ and k̃ represent the split proposal for

the table and the dish assignments, with probability q(t̃, k̃; t,k). The posterior ratio

π(t̃)/π(t) is given by

p({yji : k̃jtji = k1})p({yji : k̃jtji = k2})
p({yji : kjtji = k1})p({yji : kjtji = k2})

Γ(ñk1)Γ(ñk2)(1 + ηI(nk2 = 0))

Γ(nk1)Γ(nk2)

Γ(ñt1)Γ(ñt2)α

Γ(nt1)

Note that since the likelihood depends on the dish assignment, we need to take into

account changes in the dish allocation (first term), on top of the prior for clustering

costumers into tables (second term) and the one for clustering tables into dishes (third

term).

• Merge If two tables are merged, they get assigned to the dish of i1’s table and the

merge happens in one unique way; however the reverse move needs to be computed.

Thus, similarly to the Split move, we need to compute a launch split and we compute

the probability to go from the launch split to the two original clusters; moreover, we

compute the probability of choosing that particular dish. As before the likelihood

is affected by the change in dish allocation and the prior by the change in table

assignments and dish assignments.

Sampling k We finally sample the partition of tables into dishes. This is similarly done

using a split merge algorithm which is performed in the same way as in the DP mixture
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model, with the exception that now all the costumers seating at the tables corresponding

to a dish are used to compute the likelihood corresponding to that cluster. Let k̃ be the

proposed dish assignment that corresponds to splitting dish k1 in k, with k2 corresponding

to a new dish in k̃. In this case the posterior ratio π(k̃)/π(k) is given by

p({yji : k̃jtji = k1})p({yji : k̃jtji = k2})
p({yji : kjtji = k1})

Γ(ñk1)Γ(ñk2)η

Γ(nk1)

D.1.2. Split-merge for nHDP

In the nested Hierarchical Dirichlet Process, restaurants are no longer fixed entities, but

they are clusters of groups of costumers. Let rg be restaurant allocation of group g, and

r = (rg : ∀ g). Moreover let gc be the group corresponding to costumer c and let rgc be the

restaurant associated to costumer c through its group g. In this model, on top of sampling

t and k given the restaurant assignment, we need to sample the partition of groups into

restaurants r.

We use a Metropolis-Hastings MCMC sampling algorithm, in which the chain moves from

state x to state x∗ with probability α(x∗, x) = min{1, A(x∗, x)} and

A(x∗, x) =
q(x|x∗)p(x∗)
q(x∗|x)p(x)

.

Sampling t and k. This step reduces to the split-merge sampling for the HDP described

in the previous section.

Sampling r. Since r defines the division of groups into restaurants, it influences the prior

probability of the assignment of costumers into tables t. In fact, changing the number of

costumers of a restaurant affects the probability of the partition, even when the clusters

remain unchanged. However, changing r also affects the table assignment itself, because

in some cases, when changing the restaurant assignment of a group, the table assignments
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might become incompatible with the proposed restaurant assignment.

Consider for example the case of splitting a restaurant in which a table clusters together

the costumers from two groups that are split in the two sub-restaurants. Specifically let

j1 and j2 be these groups, such that s = rj1 = rj2 but s1 = r∗j1 6= r∗j2 = s2 and let i1 and

i2 be two costumers such that j1 = gi1 and j2 = gi2 . If these two costumers are sitting

at the same table before the split move, tsi1 = tsi2 , they cannot still sit in the same table

after the split move, i.e. we cannot have t∗s1i1 = t∗s2i2 , since sharing a table between two

different restaurants is not possible. Thus such table assignment has probability zero given

the proposed restaurant assignment and needs to be resampled together with it. That is,

we need to propose, together with r∗, a new table assignment t∗ such that t∗s1i1 6= t∗s2i2 .

Because of this complex requirements, our proposal is similar in spirit to a reversible-jump

MCMC step. In fact, r affects the dimensionality of the spaces in which t and k live. As a

consequence, our split and merge move for r is in fact a move that affects all the assignments

r, t and k. In other words, the chain moves from state x = (r, t,k) to x∗ = (r∗, t∗,k∗), with

a proposal that can be factorized conditionally:

q(x∗|x) = q(r∗|r)q(t∗|r∗, t)q(k∗|t∗,k).

We randomly sample two groups indices j1 and j2 and if rj1 = rj2 = s we split that

restaurant; if instead s1 = rj1 6= rj2 = s2 we merge the restaurants s1 and s2.

• Split The split move changes the restaurant assignment of all the groups in restaurant

s, Gs = {j 6= j1, j2 : rj = s}. Let s1 = s and s2 = Kr + 1 be the two sub-restaurants

in r∗, where Kr is the number of clusters in r. We assign j1 to s1 and j2 to s2, that

is r∗j1 = s1 and r∗j2 = s2, and we sample r∗j ∈ {s∗1, s∗2} for all j ∈ Gs. This is done

according to qsplit(r
∗|r).

Given a proposed restaurant assignment r∗, we sample the proposed table assignment
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t∗ and dish assignment k∗, taking into account that each new restaurant s in r∗ con-

tains all the costumers i whose group gi belongs to restaurant s, that is all costumers i

such that r∗gi = s. Thus the table assignment t is changed to replace restaurant s with

s1 and to include restaurant s2. The table assignments are changed in the following

way:

– if the costumers sitting at table h in ts all belong to groups that are assigned

to sk in r∗, the table remains unchanged in sk, for k = 1, 2. In other words, if

{r∗gi : ti = h} = {s1}, then table h remains unchanged in s1, and if {r∗gi : ti =

h} = {s2}, then table h remains unchanged in s2. Moreover, the dish assignment

of the table does not change: if kh = d, then k∗h = d.

– if the costumers sitting at table h in ts belong to groups that are assigned to

both s1 and s2 in r∗, then the table is split into two sub-tables, one for each sub-

restaurant. This happens if {r∗gi : ti = h} = {s1, s2}. The two subtables h1 and

h2 are created deterministically, assigning to each one the costumers that belong

to groups that are assigned to the corresponding sub-restaurant. So t∗i = hk iff

r∗gi = sk for k = 1, 2 for all i such that ti = h. Moreover, the dish assignment of

the tables does not change: if kh = d, then k∗h1
= d and k∗h2

= d.

Note that these changes to the table and dish assignments, do not affect the costumer

to dish assignment: even though a costumer might belong to a different restaurant or

seat to a different table, its dish assignment will remain the same. Moreover, since

the table and dish assignments are changed in a deterministic way, qsplit(t
∗|r∗, t) = 1

and qsplit(k
∗|t∗,k) = 1. Thus we only need to specify qsplit(r

∗|r). This is done with a

restricted Gibbs sampling step:

qsplit(rj = sk|r−j) =
p(y|k∗, t∗)p(k∗|t∗)p(t∗|r)n−j,sk∑

k=1,2 p(y|k∗, t∗)p(k∗|t∗)p(t∗|r)n−j,sk
, k = 1, 2

where we have denoted with t∗ and k∗ the table and dish assignments proposed in

164



the deterministic way we just described and n−j,sk is the size of cluster sk excluding

element j. Note that since the dish assignment of each costumer remains constant,

we can simplify the proposal distribution above: p(y|k∗, t∗) remains constant for all r

considered in this restricted Gibbs sampling step. Moreover, p(t∗|r) ∝ p(t∗s1 |r)p(t∗s2 |r),

as the other table assignments are not affected in this step. Thus

qsplit(rj = sk|r−j) =
p(k∗|t∗)p(t∗s1 |r)p(t∗s2 |r)n−j,sk∑

k=1,2 p(k
∗|t∗)p(t∗s1 |r)p(t∗s2 |r)n−j,sk

, k = 1, 2

Note that it is also thanks to these deterministic proposal distributions that by simply

sampling r, we can sample in the multidimensional space of (r, t,k). Additionally,

note that to simplify the computations, instead of p(k∗|t∗) we consider p(k∗|t∗)/p(k|t).

This can simply be computed as
∏
k∈Ds Γ(nk + mk)/Γ(nk), where nk is the number

of tables belonging to dish k in the original assignment k, mk is how many of those

tables were split into two sub-tables, and Ds is the set of dishes served in restaurant

s.

When low resolution data is also available, we can simplify our proposal distribution

qsplit and only base it on the likelihood of y(L) = (yj)j :

qsplit(rj = sk|r−j) =
p(y(L)|r)n−j,sk∑

k=1,2 p(y
(L)|r)n−j,sk

, k = 1, 2

• Merge The merge move changes the restaurant assignment of all the groups in restau-

rants s1 and s2, Gs1,s2 = {j : rj ∈ {s1, s2}}. Let s be the new restaurant which will

replace s1 and let r∗j = s for all j ∈ Gs1,s2 (restaurant s2 gets removed from r∗). Note

that qmerge(r
∗|r) = 1.

As the restaurant assignment is changed, the table and dish assignments need to

change too. As before, we need to take into account that a new restaurant s in r∗

contains all the costumers i whose group gi belongs to restaurant s, that is r∗gi = s. A
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naive proposal for changing the table assignment would be to move all tables of s2 to

the new merged restaurant s. However, we need to choose a proposal that can make

the split move reversible. For this reason, in the table assignment proposal we need

to merge some tables that belonged to the two restaurants.

Specifically, for each dish d we consider the tables in the two restaurants s1 and s2

that were assigned to dish d. Let T dsk = {h table in sk : kh = d} for k = 1, 2. If there is

at least one such table in each restaurant, i.e. #T dsk > 0 for both k = 1, 2, we combine

tables into pairs. This is done by considering the restaurant with the least number of

such tables, say s1, and considering a one-to-one function f from its tables T ds1 to the

ones in the other restaurant T ds2 , sampled uniformly at random. Thus, if kd = #T ds1

and nd = #T ds2 , the probability of sampling f is 1
nd!/(nd−kd)! . Given this matching

f , we consider the probability of merging or not the tables in each pair. We do this

proportionally to the probability of the partitions of tables in the merged restaurant

p(t∗s). The probability of merging a given pair of tables (h1, h2) is 0.5. Note that if

tables h1 and h2 are merged in table h, then t∗i = h for all i such that ti = hk, for

k = 1, 2; otherwise t∗i = ti = hk. Note that in either case the dish assignment will not

change, k∗h = d in the former case, or k∗hk = d for k = 1, 2 in the latter.

Thus the overall probability of the new table assignment t∗ is given by

qmerge(t
∗|r∗, t) =

∏
d

[
1

nd!/(nd − kd)!

kd∏
i=1

(
[pmt1,t2 ]I(m)[1− pmt1,t2 ]I(s)

)]

where I(m) and I(s) are the indicators of a split or a merge. Note that, as in the split

move, the choice for k∗ is deterministic and qmerge(k
∗|t∗,k) = 1.

Remember now that to find the acceptance probability α(x∗, x) we need to consider the
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proposed move and the reverse move. Thus, to compute Asplit(x
∗, x) we have

Asplit(x
∗, x) =

qmerge(x|x∗)p(x)

qsplit(x∗|x)p(x)
=

=
qmerge(t|r, t∗)
qsplit(r∗|r)

p(y|t,k)p(k|t)p(t|r)p(r)

p(y|t∗,k∗)p(k∗|t∗)p(t∗|r∗)p(r∗)
=

=
qmerge(t|r, t∗)
qsplit(r∗|r)

p(k|t)p(t|r)p(r)

p(k∗|t∗)p(t∗|r∗)p(r∗)
,

where the likelihood ratio p(y|t,k)/p(y|t∗,k∗) can be ignored because it’s equal to 1. Sim-

ilarly, for Amerge(x
∗, x) we have

Amerge(x
∗, x) =

qsplit(x|x∗)p(x)

qmerge(x∗|x)p(x)
=

=
qsplit(r|r∗)

qmerge(t∗|t, r∗)
p(k|t)p(t|r)p(r)

p(k∗|t∗)p(t∗|r∗)p(r∗)
.
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